来自:skyline75489 (Liu Jialiang) · GitHub
译文出处:skyline75489
链接:https://github.com/skyline75489/what-happens-when-zh_CN
当你在浏览器中输入Google.com并且按下回车之后发生了什么?
本文试图回答一个古老的面试问题:当你在浏览器中输入Google.com并且按下回车之后发生了什么?
不过我们不再局限于平常的回答,而是想办法回答地尽可能具体,不遗漏任何细节。
回车键按下
为了从头开始,我们选择键盘上的回车键被按到最低处作为起点。在这个时刻,一个专用于回车键的电流回路被直接或者通过电容器闭合了,使得少量的电流进入了键盘的逻辑电路系统。这个系统会扫描每个键的状态,对于按键开关的电位弹跳变化进行噪音消除(debounce),并将其转化为键盘码值。在这里,回车的码值是13。键盘控制器在得到码值之后,将其编码,用于之后的传输。现在这个传输过程几乎都是通过通用串行总线(USB)或者蓝牙(Bluetooth)来进行的,以前是通过PS/2或者ADB连接进行。
USB键盘:
●键盘的USB元件通过计算机上的USB接口与USB控制器相连接,USB接口中的第一号针为它提供了5V的电压
●键码值存储在键盘内部电路一个叫做”endpoint”的寄存器内
●USB控制器大概每隔10ms便查询一次”endpoint”以得到存储的键码值数据,这个最短时间间隔由键盘提供
●键值码值通过USB串行接口引擎被转换成一个或者多个遵循低层USB协议的USB数据包
●这些数据包通过D+针或者D-针(中间的两个针),以最高1.5Mb/s的速度从键盘传输至计算机。速度限制是因为人机交互设备总是被声明成”低速设备”(USB 2.0 compliance)
●这个串行信号在计算机的USB控制器处被解码,然后被人机交互设备通用键盘驱动进行进一步解释。之后按键的码值被传输到操作系统的硬件抽象层
虚拟键盘(触屏设备):
●在现代电容屏上,当用户把手指放在屏幕上时,一小部分电流从传导层的静电域经过手指传导,形成了一个回路,使得屏幕上触控的那一点电压下降,屏幕控制器产生一个中断,报告这次“点击”的坐标
●然后移动操作系统通知当前活跃的应用,有一个点击事件发生在它的某个GUI部件上了,现在这个部件是虚拟键盘的按钮
●虚拟键盘引发一个软中断,返回给OS一个“按键按下”消息
●这个消息又返回来向当前活跃的应用通知一个“按键按下”事件
产生中断[非USB键盘]
键盘在它的中断请求线(IRQ)上发送信号,信号会被中断控制器映射到一个中断向量,实际上就是一个整型数 。CPU使用中断描述符表(IDT)把中断向量映射到对应函数,这些函数被称为中断处理器,它们由操作系统内核提供。当一个中断到达时,CPU根据IDT和中断向量索引到对应的中端处理器,然后操作系统内核出场了。
(Windows)一个 WM_KEYDOWN 消息被发往应用程序
HID把键盘按下的事件传送给 KBDHID.sys 驱动,把HID的信号转换成一个扫描码(Scancode),这里回车的扫描码是 VK_RETURN(0x0d)。 KBDHID.sys 驱动和 KBDCLASS.sys (键盘类驱动,keyboard class driver)进行交互,这个驱动负责安全地处理所有键盘和小键盘的输入事件。之后它又去调用 Win32K.sys ,在这之前有可能把消息传递给安装的第三方键盘过滤器。这些都是发生在内核模式。
Win32K.sys 通过 GetForegroundWindow() API函数找到当前哪个窗口是活跃的。这个API函数提供了当前浏览器的地址栏的句柄。Windows系统的”message pump”机制调用 SendMessage(hWnd, WM_KEYDOWN, VK_RETURN, lParam) 函数, lParam 是一个用来指示这个按键的更多信息的掩码,这些信息包括按键重复次数(这里是0),实际扫描码(可能依赖于OEM厂商,不过通常不会是 VK_RETURN ),功能键(alt, shift, ctrl)是否被按下(在这里没有),以及一些其他状态。
Windows的 SendMessage API直接将消息添加到特定窗口句柄 hWnd 的消息队列中,之后赋给 hWnd 的主要消息处理函数 WindowProc 将会被调用,用于处理队列中的消息。
当前活跃的句柄 hWnd 实际上是一个edit control控件,这种情况下,WindowProc 有一个用于处理WM_KEYDOWN 消息的处理器,这段代码会查看 SendMessage 传入的第三个参数 wParam ,因为这个参数是 VK_RETURN ,于是它知道用户按下了回车键。
(Mac OS X)一个 KeyDown NSEvent被发往应用程序
中断信号引发了I/O Kit Kext键盘驱动的中断处理事件,驱动把信号翻译成键码值,然后传给OS X的WindowServer 进程。然后, WindowServer 将这个事件通过Mach端口分发给合适的(活跃的,或者正在监听的)应用程序,这个信号会被放到应用程序的消息队列里。队列中的消息可以被拥有足够高权限的线程使用 mach_ipc_dispatch 函数读取到。这个过程通常是由 NSApplication 主事件循环产生并且处理的,通过 NSEventType 为 KeyDown 的 NSEvent 。
(GNU/Linux)Xorg 服务器监听键码值
当使用图形化的 X Server 时,X Server会按照特定的规则把键码值再一次映射,映射成扫描码。当这个映射过程完成之后, X Server 把这个按键字符发送给窗口管理器(DWM,metacity, i3等等),窗口管理器再把字符发送给当前窗口。当前窗口使用有关图形API把文字打印在输入框内。
解析URL
●浏览器通过URL能够知道下面的信息:
●Protocol ”http”
●使用HTTP协议
●Resource ”/”
●请求的资源是主页(index)
输入的是URL还是搜索的关键字?
当协议或主机名不合法时,浏览器会将地址栏中输入的文字传给默认的搜索引擎。大部分情况下,在把文字传递给搜索引擎的时候,URL会带有特定的一串字符,用来告诉搜索引擎这次搜索来自这个特定浏览器。
检查HSTS列表···
●浏览器检查自带的“预加载HSTS(HTTP严格传输安全)”列表,这个列表里包含了那些请求浏览器只使用HTTPS进行连接的网站
●如果网站在这个列表里,浏览器会使用HTTPS而不是HTTP协议,否则,最初的请求会使用HTTP协议发送
●注意,一个网站哪怕不在HSTS列表里,也可以要求浏览器对自己使用HSTS政策进行访问。浏览器向网站发出第一个HTTP请求之后,网站会返回浏览器一个响应,请求浏览器只使用HTTPS发送请求。然而,就是这第一个HTTP请求,却可能会使用户收到 downgrade attack 的威胁,这也是为什么现代浏览器都预置了HSTS列表。
转换非ASCII的Unicode字符
●浏览器检查输入是否含有不是 a-z, A-Z,0-9, - 或者 . 的字符
●这里主机名是 google.com ,所以没有非ASCII的字符,如果有的话,浏览器会对主机名部分使用Punycode 编码
DNS查询···
●浏览器检查域名是否在缓存当中
●如果缓存中没有,就去调用 gethostbynme 库函数(操作系统不同函数也不同)进行查询
●gethostbyname 函数在试图进行DNS解析之前首先检查域名是否在本地Hosts里,Hosts的位置 不同的操作系统有所不同
●如果 gethostbyname 没有这个域名的缓存记录,也没有在 hosts 里找到,它将会向DNS 服务器发送一条DNS查询请求。DNS服务器是由网络通信栈提供的,通常是本地路由器或者ISP的缓存DNS服务器。
●查询本地 DNS 服务器
●如果DNS服务器和我们的主机在同一个子网内,系统会按照下面的 ARP 过程对 DNS 服务器进行 ARP查询
●如果DNS服务器和我们的主机在不同的子网,系统会按照下面的 ARP 过程对默认网关进行查询
ARP
要想发送ARP广播,我们需要有一个目标IP地址,同时还需要知道用于发送ARP广播的接口的Mac地址。
●首先查询ARP缓存,如果缓存命中,我们返回结果:目标IP = MAC
如果缓存没有命中:
●查看路由表,看看目标IP地址是不是在本地路由表中的某个子网内。是的话,使用跟那个子网相连的接口,否则使用与默认网关相连的接口。
●查询选择的网络接口的MAC地址
●我们发送一个二层ARP请求:
ARP Request:
Sender MAC: interface:mac:address:here
Sender IP: interface.ip.goes.here
Target MAC: FF:FF:FF:FF:FF:FF (Broadcast)
Target IP: target.ip.goes.here
根据连接主机和路由器的硬件类型不同,可以分为以下几种情况:
直连:
●如果我们和路由器是直接连接的,路由器会返回一个 ARP Reply (见下面)。
集线器:
●如果我们连接到一个集线器,集线器会把ARP请求向所有其它端口广播,如果路由器也“连接”在其中,它会返回一个 ARP Reply 。
交换机:
●如果我们连接到了一个交换机,交换机会检查本地 CAM/MAC 表,看看哪个端口有我们要找的那个MAC地址,如果没有找到,交换机会向所有其它端口广播这个ARP请求。
●如果交换机的MAC/CAM表中有对应的条目,交换机会向有我们想要查询的MAC地址的那个端口发送ARP请求
●如果路由器也“连接”在其中,它会返回一个 ARP Reply
ARP Reply:
Sender MAC: target:mac:address:here
Sender IP: target.ip.goes.here
Target MAC: interface:mac:address:here
Target IP: interface.ip.goes.here
现在我们有了DNS服务器或者默认网关的IP地址,我们可以继续DNS请求了:
●使用53端口向DNS服务器发送UDP请求包,如果响应包太大,会使用TCP
●如果本地/ISP DNS服务器没有找到结果,它会发送一个递归查询请求,一层一层向高层DNS服务器做查询,直到查询到起始授权机构,如果找到会把结果返回
使用套接字
当浏览器得到了目标服务器的IP地址,以及URL中给出来端口号(http协议默认端口号是80, https默认端口号是443),它会调用系统库函数 socket ,请求一个 TCP流套接字,对应的参数是 AF_INET 和SOCK_STREAM 。
●这个请求首先被交给传输层,在传输层请求被封装成TCP segment。目标端口会会被加入头部,源端口会在系统内核的动态端口范围内选取(Linux下是ip_local_port_range)
●TCP segment被送往网络层,网络层会在其中再加入一个IP头部,里面包含了目标服务器的IP地址以及本机的IP地址,把它封装成一个TCP packet。
●这个TCP packet接下来会进入链路层,链路层会在封包中加入frame头部,里面包含了本地内置网卡的MAC地址以及网关(本地路由器)的MAC地址。像前面说的一样,如果内核不知道网关的MAC地址,它必须进行ARP广播来查询其地址。
到了现在,TCP封包已经准备好了,可是使用下面的方式进行传输:
●以太网
●WiFi
●蜂窝数据网络
对于大部分家庭网络和小型企业网络来说,封包会从本地计算机出发,经过本地网络,再通过调制解调器把数字信号转换成模拟信号,使其适于在电话线路,有线电视光缆和无线电话线路上传输。在传输线路的另一端,是另外一个调制解调器,它把模拟信号转换回数字信号,交由下一个 网络节点 处理。节点的目标地址和源地址将在后面讨论。
大型企业和比较新的住宅通常使用光纤或直接以太网连接,这种情况下信号一直是数字的,会被直接传到下一个 网络节点 进行处理。
最终封包会到达管理本地子网的路由器。在那里出发,它会继续经过自治区域的边界路由器,其他自治区域,最终到达目标服务器。一路上经过的这些路由器会从IP数据报头部里提取出目标地址,并将封包正确地路由到下一个目的地。IP数据报头部TTL域的值每经过一个路由器就减1,如果封包的TTL变为0,或者路由器由于网络拥堵等原因封包队列满了,那么这个包会被路由器丢弃。
上面的发送和接受过程在TCP连接期间会发生很多次:
客户端选择一个初始序列号(ISN),将设置了SYN位的封包发送给服务器端,表明自己要建立连接并设置了初始序列号
服务器端接受到SYN包,如果它可以建立连接:
●服务器端选择它自己的初始序列号
●服务器端设置SYN位,表明自己选择了一个初始序列号
●服务器端把 (客户端ISN + 1) 复制到ACK域,并且设置ACK位,表明自己接收到了客户端的第一个封包
客户端通过发送下面一个封包来确认这次连接:
●自己的序列号+1
●接收端ACK+1
●设置ACK位
数据通过下面的方式传输:
●当一方发送了N个Bytes的数据之后,将自己的SEQ序列号也增加N
●另一方确认接收到这个数据包(或者一系列数据包)之后,它发送一个ACK包,ACK的值设置为接收到的数据包的最后一个序列号
关闭连接时:
●要关闭连接的一方发送一个FIN包
●另一方确认这个FIN包,并且发送自己的FIN包
●要关闭的一方使用ACK包来确认接收到了FIN
UDP 数据包
TLS 握手
●客户端发送一个 Client hello 消息到服务器端,消息中同时包含了它的TLS版本,可用的加密算法和压缩算法。
●服务器端向客户端返回一个 Server hello 消息,消息中包含了服务器端的TLS版本,服务器选择了哪个加密和压缩算法,以及服务器的公开证书,证书中包含了公钥。客户端会使用这个公钥加密接下来的握手过程,直到协商生成一个新的对称密钥
●客户端根据自己的信任CA列表,验证服务器端的证书是否有效。如果有效,客户端会生成一串伪随机数,使用服务器的公钥加密它。这串随机数会被用于生成新的对称密钥
●服务器端使用自己的私钥解密上面提到的随机数,然后使用这串随机数生成自己的对称主密钥
●客户端发送一个 Finished 消息给服务器端,使用对称密钥加密这次通讯的一个散列值
●服务器端生成自己的 hash 值,然后解密客户端发送来的信息,检查这两个值是否对应。如果对应,就向客户端发送一个 Finished 消息,也使用协商好的对称密钥加密
●从现在开始,接下来整个 TLS 会话都使用对称秘钥进行加密,传输应用层(HTTP)内容
TCP 数据包
HTTP 协议···
如果浏览器是Google出品的,它不会使用HTTP协议来获取页面信息,而是会与服务器端发送请求,商讨使用SPDY协议。
如果浏览器使用HTTP协议,它会向服务器发送这样的一个请求:
GET / HTTP/1.1
Host: google.com
[其他头部]
“其他头部”包含了一系列的由冒号分割开的键值对,它们的格式符合HTTP协议标准,它们之间由一个换行符分割开来。这里我们假设浏览器没有违反HTTP协议标准的bug,同时浏览器使用 HTTP/1.1 协议,不然的话头部可能不包含 Host 字段,同时 GET 请求中的版本号会变成 HTTP/1.0 或者 HTTP/0.9 。
HTTP/1.1 定义了“关闭连接”的选项 “close”,发送者使用这个选项指示这次连接在响应结束之后会断开:
Connection:close
不支持持久连接的 HTTP/1.1 必须在每条消息中都包含 “close” 选项。
在发送完这些请求和头部之后,浏览器发送一个换行符,表示要发送的内容已经结束了。
服务器端返回一个响应码,指示这次请求的状态,响应的形式是这样的:
200 OK
[response headers]
然后是一个换行,接下来有效载荷(payload),也就是 www.google.com 的HTML内容。服务器下面可能会关闭连接,如果客户端请求保持连接的话,服务器端会保持连接打开,以供以后的请求重用。
如果浏览器发送的HTTP头部包含了足够多的信息(例如包含了 Etag 头部,以至于服务器可以判断出,浏览器缓存的文件版本自从上次获取之后没有再更改过,服务器可能会返回这样的响应:
304 Not Modified
[response headers]
这个响应没有有效载荷,浏览器会从自己的缓存中取出想要的内容。
在解析完HTML之后,浏览器和客户端会重复上面的过程,直到HTML页面引入的所有资源(图片,CSS,favicon.ico等等)全部都获取完毕,区别只是头部的 GET / HTTP/1.1 会变成 GET /$(相对www.google.com的URL) HTTP/1.1 。
如果HTML引入了 www.google.com 域名之外的资源,浏览器会回到上面解析域名那一步,按照下面的步骤往下一步一步执行,请求中的 Host 头部会变成另外的域名。
HTTP服务器请求处理
HTTPD(HTTP Daemon)在服务器端处理请求/相应。最常见的 HTTPD 有 Linux 上常用的 Apache 和 nginx,与 Windows 上的 IIS。
●HTTPD接收请求
●服务器把请求拆分为以下几个参数:
●HTTP请求方法(GET, POST, HEAD, PUT 和 DELETE )。在访问Google这种情况下,使用的是GET方法
●域名:google.com
●请求路径/页面:/ (我们没有请求google.com下的指定的页面,因此 / 是默认的路径)
●服务器验证其上已经配置了google.com的虚拟主机
●服务器验证google.com接受GET方法
●服务器验证该用户可以使用GET方法(根据IP地址,身份信息等)
●如果服务器安装了 URL 重写模块(例如 Apache 的 mod_rewrite 和 IIS 的 URL Rewrite),服务器会尝试匹配重写规则,如果匹配上的话,服务器会按照规则重写这个请求
●服务器根据请求信息获取相应的响应内容,这种情况下由于访问路径是 “/” ,会访问首页文件。(你可以重写这个规则,但是这个是最常用的)
●服务器会使用指定的处理程序分析处理这个文件,比如假设Google使用PHP,服务器会使用PHP解析index文件,并捕获输出,把PHP的输出结果给请求者
浏览器背后的故事
当服务器提供了资源之后(HTML,CSS,JS,图片等),浏览器会执行下面的操作:
●解析 HTML,CSS,JS
●渲染——构建 DOM 树 -> 渲染 -> 布局 -> 绘制
浏览器
浏览器的功能是从服务器上取回你想要的资源,然后展示在浏览器窗口当中。资源通常是 HTML 文件,也可能是 PDF,图片,或者其他类型的内容。资源的位置通过用户提供的 URI(Uniform Resource Identifier) 来确定。
浏览器解释和展示 HTML 文件的方法,在 HTML 和 CSS 的标准中有详细介绍。这些标准由 Web 标准组织 W3C(World Wide Web Consortium) 维护。
不同浏览器的用户界面大都十分接近,有很多共同的 UI 元素:
●一个地址栏
●后退和前进按钮
●书签选项
●刷新和停止按钮
●主页按钮
●浏览器高层架构
组成浏览器的组件有:
●用户界面 用户界面包含了地址栏,前进后退按钮,书签菜单等等,除了请求页面之外所有你看到的内容都是用户界面的一部分
●浏览器引擎 浏览器引擎负责让 UI 和渲染引擎协调工作
●渲染引擎 渲染引擎负责展示请求内容。如果请求的内容是 HTML,渲染引擎会解析 HTML 和 CSS,然后将内容展示在屏幕上
●网络组件 网络组件负责网络调用,例如 HTTP 请求等,使用一个平台无关接口,下层是针对不同平台的具体实现
●UI后端 UI后端用于绘制基本 UI 组件,例如下拉列表框和窗口。UI 后端暴露一个统一的平台无关的接口,下层使用操作系统的 UI 方法实现
●Javascript 解释器 Javascript 解释器用于解析和执行 Javascript 代码
●数据存储 数据存储组件是一个持久层。浏览器可能需要在本地存储各种各样的数据,例如 Cookie 等。浏览器也需要支持诸如 localStorage,IndexedDB,WebSQL 和 FileSystem 之类的存储机制
HTML 解析
浏览器渲染引擎从网络层取得请求的文档,一般情况下文档会分成8kB大小的分块传输。
HTML解析器的主要工作是对HTML文档进行解析,生成解析树。
解析树是以DOM元素以及属性为节点的树。DOM是文档对象模型(Document Object Model)的缩写,它是HTML文档的对象表示,同时也是HTML元素面向外部(如Javascript)的接口。树的根部是”Document”对象。整个DOM和HTML文档几乎是一对一的关系。
解析算法
HTML不能使用常见的自顶向下或自底向上方法来进行分析。主要原因有以下几点:
●语言本身的“宽容”特性
●HTML本身可能是残缺的,对于常见的残缺,浏览器需要有传统的容错机制来支持它们
●解析过程需要反复。对于其他语言来说,源码不会在解析过程中发生变化,但是对于HTML来说,动态代码,例如脚本元素中包含的 document.write() 方法会在源码中添加内容,也就是说,解析过程实际上会改变输入的内容
由于不能使用常用的解析技术,浏览器创造了专门用于解析HTML的解析器。解析算法在 HTML5 标准规范中有详细介绍,算法主要包含了两个阶段:标记化(tokenization)和树的构建。
解析结束之后
浏览器开始加载网页的外部资源(CSS,图像,Javascript 文件等)。
此时浏览器把文档标记为“可交互的”,浏览器开始解析处于“推迟”模式的脚本,也就是那些需要在文档解析完毕之后再执行的脚本。之后文档的状态会变为“完成”,浏览器会进行“加载”事件。
注意解析 HTML 网页时永远不会出现“语法错误”,浏览器会修复所有错误,然后继续解析。
执行同步 Javascript 代码。
CSS 解析
●根据 CSS词法和句法 分析CSS文件和