专栏名称: 新机器视觉
最前沿的机器视觉与计算机视觉技术
目录
相关文章推荐
中核集团  ·  今日元宵,前方→核工业不夜城! ·  昨天  
中核集团  ·  新春走基层 | 在核岛上蹁跹起舞的他们 ·  2 天前  
中核集团  ·  “孩子们,我们走了,接力棒交给你们了” ·  3 天前  
51好读  ›  专栏  ›  新机器视觉

神经网络RNN图解!

新机器视觉  · 公众号  ·  · 2024-09-14 11:33

正文

作者:zhenguo

来源:Python与算法社区

转自:机器学习实验室


神经网络是深度学习的载体,而神经网络模型中,最经典非RNN模型所属,尽管它不完美,但它具有学习历史信息的能力。后面不管是encode-decode 框架,还是注意力模型,以及自注意力模型,以及更加强大的Bert模型家族,都是站在RNN的肩上,不断演化、变强的。


这篇文章,阐述了RNN的方方面面,包括模型结构,优缺点,RNN模型的几种应用,RNN常使用的激活函数,RNN的缺陷,以及GRU,LSTM是如何试图解决这些问题,RNN变体等。


这篇文章最大特点是图解版本,其次语言简练,总结全面。

概述

传统RNN的体系结构。Recurrent neural networks,也称为RNNs,是一类允许先前的输出用作输入,同时具有隐藏状态的神经网络。它们通常如下所示:

对于每一时步 , 激活函数 ,输出 被表达为:

这里 是时间维度网络的共享权重系数

是激活函数


下表总结了典型RNN架构的优缺点:

优点 缺点
处理任意长度的输入 计算速度慢
模型形状不随输入长度增加 难以获取很久以前的信息
计算考虑了历史信息 无法考虑当前状态的任何未来输入
权重随时间共享

RNNs应用

RNN模型主要应用于自然语言处理和语音识别领域。下表总结了不同的应用:

RNN 类型 图解 例子
1对1

传统神经网络
1对多

音乐生成
多对1

情感分类
多对多

命名实体识别
多对多

机器翻译

损失函数

对于RNN网络,所有时间步的损失函数 是根据每个时间步的损失定义的,如下所示:

时间反向传播

在每个时间点进行反向传播。在时间步 ,损失 相对于权重矩阵 的偏导数表示如下:

处理长短依赖

常用激活函数

RNN模块中最常用的激活函数描述如下:

Sigmoid Tanh RELU



梯度消失/爆炸

在RNN中经常遇到梯度消失和爆炸现象。之所以会发生这种情况,是因为很难捕捉到长期的依赖关系,因为乘法梯度可以随着层的数量呈指数递减/递增。

梯度修剪

梯度修剪是一种技术,用于执行反向传播时,有时遇到的梯度爆炸问题。通过限制梯度的最大值,这种现象在实践中得以控制。


门的类型

为了解决消失梯度问题,在某些类型的RNN中使用特定的门,并且通常有明确的目的。它们通常标注为 ,等于:







请到「今天看啥」查看全文