专栏名称: 数据分析与开发
伯乐在线旗下账号,分享数据库相关技术文章、教程和工具,另外还包括数据库相关的工作。偶尔也谈谈程序员人生 :)
目录
相关文章推荐
51好读  ›  专栏  ›  数据分析与开发

GitHub 开源的 MySQL 在线更改 Schema 工具

数据分析与开发  · 公众号  · 数据库  · 2016-12-23 23:34

正文

(点击 上方公众号 ,可快速关注)


英文:GitHub

译者:好雨科技

链接: segmentfault.com/a/1190000006158503


MySQL在线更改schema的工具很多,如Percona的pt-online-schema-change、 Facebook的 OSC 和 LHM 等,但这些都是基于触发器(Trigger)的,今天咱们介绍的 gh-ost 号称是不需要触发器(Triggerless)支持的在线更改表结构的工具。



本文先介绍一下当前业界已经存在的这些工具的使用场景和原理,然后再详细介绍 gh-ost 的工作原理和特性。


今天我们开源了GitHub内部使用的一款 不需要触发器支持的 MySQL 在线更改表结构的工具 gh-ost


开发 gh-ost 是为了应付GitHub在生产环境中面临的持续的、不断变化的在线修改表结构的需求。gh-ost 通过提供低影响、可控、可审计和操作友好的解决方案改变了现有的在线迁移表工具的工作模式。


MySQL表迁移及结构更改操作是业界众所周知的问题,2009年以来已经可以通过在线(不停服务)变更的工具来解决。迅速增长,快速迭代的产品往往需要频繁的需改数据库的结构。增加/更改/删除/ 字段和索引等等,这些操作在MySQL中默认都会锁表,影响线上的服务。 向这种数据库结构层面的变更我们每天都会面临多次,当然这种操作不应该影响用户的正常服务。


在开始介绍 gh-ost 工具之前,咱们先来看一下当前现有的这些工具的解决方案。


在线修改表结构,已存在的场景


如今,在线修改表结构可以通过下面的三种方式来完成:


  • 在从库上修改表结构,操作会在其他的从库上生效,将结构变更了的从库设置为主库


  • 使用 MySQL InnoDB 存储引擎提供的在线DDL特性


  • 使用在线修改表结构的工具。现在最流行的是 pt-online-schema-change 和 Facebook 的 OSC;当然还有 LHM 和比较原始的 oak-online-alter-table 工具。


其他的还包括 Galera 集群的Schema滚动更新,以及一些其他的非InnoDB的存储引擎等待,在 GitHub 我们使用通用的 主-从 架构 和 InnoDB 存储引擎。


为什么我们决定开始一个新的解决方案,而不是使用上面的提到的这些呢?现有的每种解决方案都有其局限性,下文会对这些方式的普遍问题简单的说明一下,但会对基于触发器的在线变更工具的问题进行详细说明。


  • 基于主从复制的迁移方式需要很多的前置工作,如:大量的主机,较长的传输时间,复杂的管理等等。变更操作需要在一个指定的从库上或者基于sub-tree的主从结构中执行。需要的情况也比较多,如:主机宕机、主机从早先的备份中恢复数据、新主机加入到集群等等,所有这些情况都有可能对我们的操作造成影响。最要命的是可能这些操作一天要进行很多次,如果使用这种方法我们操作人员每天的效率是非常高的(译者注:现如今很少有人用这种方式了吧)


  • MySQL针对Innodb存储引擎的在线DDL操作在开始之前都需要一个短时间排它锁(exclusive)来准备环境,所以alter命令发出后,会首先等待该表上的其它操作完成,在alter命令之后的请求会出现等待waiting meta data lock。同样在ddl结束之前,也要等待alter期间所有的事务完成,也会堵塞一小段时间,这对于繁忙的数据库服务来说危险系数是非常高的。另外DDL操作不能中断,如果中途kill掉,会造成长时间的事务回滚,还有可能造成元数据的损坏。它操作起来并不那么的Nice,不能限流和暂停,在大负载的环境中甚至会影响正常的业务。


  • 我们用了很多年的 pt-online-schema-change 工具。然而随着我们不断增长的业务和流量,我们遇到了很多的问题,我们必须考虑在操作中的哪些 危险操作 (译者注:pt工具集的文档中经常会有一些危险提示)。某些操作必须避开高峰时段来进行,否则MySQL可能就挂了。所有现存的在线表结构修改的工具都是利用了MySQL的触发器来执行的,这种方式有一些潜藏的问题。


基于触发器的在线修改有哪些问题呢?


所有在线表结构修改工具的操作方式都类似:创建与原表结构一致的临时表,该临时表已经是按要求修改后的表结构了,缓慢增量的从原表中复制数据,同时记录原表的更改(所有的 INSERT, DELETE, UPDATE 操作) 并应用到临时表。当工具确认表数据已经同步完成,它会进行替换工作,将临时表更名为原表。


pt-online-schema-change, LHM 和 oak-online-alter-table 这些工具都使用同步的方式,当原表有变更操作时利用一些事务的间隙时间将这些变化同步到临时表。Facebook 的工具使用异步的方式将变更写入到changelog表中,然后重复的将changelog表的变更应用到临时表。所有的这些工具都使用触发器来识别原表的变更操作。


当表中的每一行数据有 INSERT, DELETE, UPDATE 操作时都会调用存储的触发器。一个触发器可能在一个事务空间中包含一系列查询操作。这样就会造成一个原子操作不单会在原表执行,还会调用相应的触发器执行多个操作。


在基于触发器迁移实践中,遇到了如下的问题:


  • 触发器是以解释型代码的方式保存的。MySQL 不会预编译这些代码。 会在每次的事务空间中被调用,它们被添加到被操作的表的每个查询行为之前的分析和解释器中。


  • 锁表:触发器在原始表查询中共享相同的事务空间,而这些查询在这张表中会有竞争锁,触发器在另外一张表会独占竞争锁。在这种极端情况下,同步方式的锁争夺直接关系到主库的并发写性能。以我们的经验来说,在生产环境中当竞争锁接近或者结束时,数据库可能会由于竞争锁而被阻塞住。触发锁的另一个方面是创建或销毁时所需要的元数据锁。我们曾经遇到过在繁忙的表中当表结构修改完成后,删除触发器可能需要数秒到分钟的时间。


  • 不可信:当主库的负载上升时,我们希望降速或者暂停操作,但基于触发器的操作并不能这么做。虽然它可以暂停行复制操作,但却不能暂停出触发器,如果删除触发器可能会造成数据丢失,因此触发器需要在整个操作过程中都要存在。在我们比较繁忙的服务器中就遇到过由于触发器占用CPU资源而将主库拖死的例子。


  • 并发迁移:我们或者其他的人可能比较关注多个同时修改表结构(不同的表)的场景。鉴于上述触发器的开销,我们没有兴趣同时对多个表进行在线修改操作,我们也不确定是否有人在生产环境中这样做过。


  • 测试:我们修改表结构可能只是为了测试,或者评估其负载开销。基于触发器的表结构修改操作只能通过基于语句复制的方式来进行模拟实验,离真实的主库操作还有一定的距离,不能真实的反映实际情况。


gh-ost


gh-ost GitHub 的在线 Schema 修改工具,下面工作原理图:



gh-ost 具有如下特性:


  • 无触发器

  • 轻量级

  • 可暂停

  • 可动态控制

  • 可审计

  • 可测试

  • 值得信赖


无触发器


gh-ost 没有使用触发器。它通过分析binlog日志的形式来监听表中的数据变更。因此它的工作模式是异步的,只有当原始表的更改被提交后才会将变更同步到临时表(ghost table)


gh-ost 要求binlog是RBR格式 ( 基于行的复制);然而也不是说你就不能在基于SBR(基于语句的复制)日志格式的主库上执行在线变更操作。实际上是可以的。gh-ost 可以将从库的 SBR日志转换为RBR日志,只需要重新配置就可以了。


轻量级


由于没有使用触发器,因此在操作的过程中对主库的影响是最小的。当然在操作的过程中也不用担心并发和锁的问题。 变更操作都是以流的形式顺序的写到binlog文件中,gh-ost只是读取他们并应用到gh-ost表中。实际上,gh-ost 通过读取binlog的写事件来进行顺序的行复制操作。因此,主库只会有一个单独连接顺序的将数据写入到临时表(ghost table)。这和ETL操作有很大的不同。







请到「今天看啥」查看全文


推荐文章
成都商报房产发布  ·  未成年子女买房,这些风险你考虑过吗?
7 年前
环球时报  ·  这些“台湾同胞” 北京欢迎你
7 年前
文学家  ·  穿云破雾
7 年前
方正证券研究  ·  早安!方正最新观点20171108
7 年前