专栏名称: 产业智能官
用新一代技术+商业操作系统(AI-CPS OS:云计算+大数据+物联网+区块链+人工智能),在场景中构建状态感知-实时分析-自主决策-精准执行-学习提升的认知计算和机器智能;实现产业转型升级、DT驱动业务、价值创新创造的产业互联生态链。
目录
相关文章推荐
51好读  ›  专栏  ›  产业智能官

【工业大数据】工业大数据始于业务止于业务、车间物联网数据管理、面向产品全寿期的xBOM、构建制造型企业新型能力

产业智能官  · 公众号  ·  · 2018-10-23 05:59

正文


工业大数据:始于业务,止于业务


《制造业数据管理的再认知》一文 中我们将工业大数据分为公共资源数据、工程类数据、管理类数据和物联数据。其中管理类数据一般也称业务数据,即由业务活动产生的记录。传统的数据仓库理论将业务数据的管理理论和应用模式发展到一个很成熟的水平,目前无论制造企业还是IT公司在谈工业大数据时,更多是按照数据仓库理念在进行企业数据的管理和应用。


美林公司认为传统的数据仓库理论是建立在结构化业务数据的基础上,是工业大数据的重要组成部分之一。其难点在于从千变万化的业务中找到稳定的数据结构,又能方便的支撑业务数据的统计和分析,下面重点阐述业务数据如何从业务中来又如何到业务中去。


第一节数据管理的基础理论

数据管理是利用计算机硬件和软件技术对数据进行有效的收集、存储、处理和应用的过程,其核心是数据组织。为了能够对数据进行有效组织,演化出了主题域、主题、子主题等概念,这几个概念是建立起虚拟的数据分类关系,如一颗大树不断的分叉直到挂接到某几个关系相对稳定的数据模型。元数据是数据的数据,用来对数据属性进行定义,比如人的元数据包括姓名、电话、年龄等。数据实体就是数据模型的实体化,比如人的数据实体包括张三、135XXXX5678、30岁等。具体关系如下图所示:

小结一下,业务域、业务主题域、业务子主题域等的划分都是虚拟的,元数据是对业务实体的属性定义(目前我们将编码规则和编码值当成元数据的重要属性进行管理),其目的是为了方便数据实体的查询、检索和维护,都是数据标准的重要组成部分。数据实体对于具体的物理实体,根据应用和管理需要分为主数据、业务数据、主题分析数据。


第二节业务数据的建模方法

从业务系统中抽象出稳定的数据结构,一直是业务数据的管理和组织的基础核心,业界主要采用IRP和EA两种建模手段进行数据结构设计。IRP理论从组织机构入手,识别各部门的用户视图(单据或报表),通过对业务单据或报表中数据项的识别和归纳得到相应数据模型;EA理论从主辅价值链入手,从而得到最末端流程,并通过关键活动产生的数据进行分析得到相应的数据模型。IRP相对于EA属于自底向上的轻量级的建模方法,主要解决数据建模问题,EA属于自顶向下的重量级的建模方法,主要解决业务建模、应用建模和数据建模,数据模型只是企业模型的一部分。


美林公司目前采用EA+IRP的方式进行企业数据建模,从企业主价值链入手并导入最佳实践,根据二、三级流程关键活动节点识别核心数据,从核心系统应用入手识别核心数据关键属性和集成关系,从而快速得到企业级的数据视图。

第三节业务数据的应用模式

1. 业务数据的查询浏览: 业务数据通过线上采集或线下导入进入数据中心后,供业务人员进行查询、浏览,并能支持漫游和穿透。


2.业务数据的共享集成: 由于各业务系统按照各自业务域进行建设,企业价值链的协同势必涉及各业务域之间的数据集成和交互。利用业务数据集中管理将过去点对点的集成变成总线式集成,提升系统集成的效率和可靠性。


3. 业务数据的统计分析: 业务数据结构化以后最大的价值是统计分析,将业务记录通过统计变成业务规律用以指导业务改进。传统上我们利用Excel工具就开发了大量的离线数据的统计应用,现在各种BI工具更是提供了在线统计应用能力。


工业大数据:车间物联网数据管理


《制造业数据管理的再认知》一文中我们将工业大数据分为公共资源数据、工程类数据、管理类数据和物联数据。这篇文章主要谈谈物联数据,也是数据管理部分的最后一篇了。传统的管理系统将人作为数据采集端,用流程来固化组织的行为,用指标来衡量评价流程和组织的效率。工业企业的物联网,就是要将人和物联系起来,将系统和物联系起来,将物作为数据采集端,由人或系统进行数据分析和决策。数据的分析与优化是物联网的关键技术之一,也是未来物联网发挥价值的关键点。物联网在工业中有很多种应用方式,如物流仓储、生产制造、产品运维等,我们这里重点讲讲生产制造和产品运维。


1

物联数据的组织方式


工业企业的生产制造物联网应用一般称为车间物联网或者叫制造物联,通过使用RFID传感器、无线网络通信、GPS定位、语音视频系统等技术把制造计划与制造资源“人、机、料、法、环”等信息链接起来,从而对五大制造资源智能化识别、定位、跟踪、监控和管理,从而满足企业指挥调度、环境监测等方面的管理要求。五大制造资源分为静态属性和动态属性,如一台机床设备的静态属性又可以分为管理信息(设备编码、设备名称、设备分类等)、静态参数(工作环境、进给速度、切削参数等)、动态参数(机床状态、车床完备率、车床负荷率、维修记录等)。静态属性不受生产过程的影响,并在生产流程开始之前已经确定,是车间现场管理中的常量数据,但这些数据并非永远固定不变,它们可在生产过程结束后由用户进行调整;动态数据是一直处于变化中的数据,车间物联网数据大多属于动态数据。



2

物联数据的管理技术


车间物联网是一种典型的复杂信息系统,涉及数据管理的各个方面,主要包括:数据质量控制、数据融合与集成、复杂事件处理、数据存储与处理,以及安全访问控制等。

  • 数据质量控制: 物联网的数据质量可以用精确度、置信度和完整性三个指标来衡量。在提高射频识别、传感器网络数据质量控制方面,主要采用清除多读和误读数据、填补漏读的数据。数据清洗通常采用概率统计和时空关联的方法。

  • 数据融合与集成: 物联网数据空间内数据对象的多态性表现在多类型、异构和无统一模式。因此,一方面需要构建车间统一的数据模型,用统一的方式表达数据;第二方面以统一数据模型为基础,研究如何将异构数据映射和转换到统一的数据框架中;第三方面物联网中的数据源是分布、自治和独立的。在数据集成过程中,有时需要自动地发现相关的数据源;第四方面要记录数据的来源,从而实现数据的溯源;第五方面车间制造资源是不断变化的,这种变化会对于数据的一致性、版本和模式更新等产生影响,要能够记录数据演化的过程。

  • 复杂事件处理: 在典型的物联网应用中,上层系统负责监测各个物体的状态和行为,并控制其按照既定的程序作出智能反应并完成相应行为。物体的行为通常以事件形式表达。

  • 安全访问控制: 由于物联网的开放性,如何保护好了传感数据的隐私性成为一个棘手问题。因为这些海量数据很容易获取、如果几何互联网检索信息,使用复杂的推理技术,就可推演出隐私信息。物联网的物体异构性和移动性增加了隐私保护的复杂性。


3

物联数据的应用模式


物联车间的生产管控: 车间生产指挥调度中心作为整个生产的“大脑”,需要统筹调度车间的各项资源及生产能力,该中心通过集成ERP、MES、MDC等系统数据,以电子大屏幕为载体,展示各生产现场作业情况、突发事件、事件跟踪、改进情况等。结合精益生产理念,对各生产单元的生产任务执行进行全过程管理,通过统计、分析、归纳、预测后,实现生产数据可视化管理,为全景展示公司生产任务执行情况,提供企业决策支持分析,确保生产任务按质、按量的准时完成。

物联车间的质量控制: 某钢铁企业是中国最大的特种钢材生产企业,在其某条硅钢生产线上,由于多种复杂因素的作用,成品表面有时会形成一种称为纵条纹的瓦楞状缺陷。纵条纹缺陷不仅影响产品的外观效果,而且对产品的物理性能如层间电阻,电磁性能和叠片性能等有着直接的影响,其纵条纹缺陷钢占生产量的30%左右,每年给企业带来巨大的损失。通过数据挖掘技术对生产工艺流程数据进行深入分析和挖掘,建立产品质量优化模型,减低次品率,提升产品质量。



工业大数据:小数据为主,大数据为仆


《制造业数据管理的再认识》一文中提到我们将数据分为主数据、产品工程数据、企业管理数据和物联实时数据等四大类。其中主数据是跨业务部门共享且相对静止不变的数据,制造企业常见的主数据有供应商、客户、组织、人员、财务科目、产品、项目等。这些数据分布在不同的业务部门和业务系统,企业经营过程中主要的业务活动和业务流程又都是围绕这些核心业务对象开展的。所以主数据是企业数据资源的纲,只有管好企业最核心的数据资源,才能实现大数据的纲举目张。

第一节 主数据管理是什么

主数据管理工作分为主数据治理和主数据应用两部分,其中主数据治理包括数据标准 制定,数据流向和U/C矩阵规划,IT系统诊断及优化等工作,主数据应用包括企业主数据的统一编码服务、数据共享分发服务,工程资源集成管理服务,物资采购优选服务等工作。

第二节    主数据项目怎么干

主数据项目属于典型的“企业级应用”,,美林根据实施的案例总结出“五步法”实施方法论:

第一步是数据资源规划: 对现有企业数据资源进行咨询规划和梳理优化,得到企业数据资源的数据架构,这个架构将指导企业现在及未来的数据资源管理和利用,保证数据管理工作的投入和收益的持续性;

第二步是主数据标准体系设计: 对主数据的属性、编码、分类、层级、流向、寿期等进行标准化设计,并形成企业级的数据标准规范,用于指导未来业务系统建设和现有业务系统的改造。

第三步是主数据管控体系建设: 对主数据的标准、安全、质量等管理活动进行组织、流程、工具、考核等要素的设计,保证主数据建设成果的可控、能控、在控,避免出现“人人有关、人人不管”的情况出现。

第四步是主数据治理及规范化: 对存量的数据资源进行治理,提升存量数据的有效性、完整性,对增量的数据资源进行集成,保证增量数据的及时性、准确性。

第五步是平台实施及接口联调: 根据前期形成的数据标准体系、数据管控体系、期初数据库、期间增量数据、系统集成方案等成果利用美林数据集成平台进行相应实施。

第三节    主数据资源怎么用


1、数据的统一编码: 数据编码的基本原理是将编码分解为最细粒度的码段,按码段生成码值,并拼接为编码。由主数据管理平台按照数据编码标准,划分编码码段、定义数据的自动编码规则,在编码库的支撑下通过编码引擎实现数据创建时的自动赋码。

2、数据共享分发机制: 主数据是企业应用最广泛的数据,需要在各业务系统间共享,避免数据的重复录入,产生数据不一致。主数据典型的统一管理与共享分发机制如下图所示:

3、数据管理体系支撑: 利用工作流技术实现主数据生命周期从数据创建申请开始,直到数据停用,历经申请、生成、审核、生效、变更、历史、封存等状态。

4、工程资源数据集中管理: 解决工程设计中参数模型和三维模型因设计工具不同,设计人员不同、所属项目不同而出现的不一致问题,将设计人员手头的设计资源集中进行管理集中进行应用。


工业大数据:制造业数据管理的再认知


工业大数据这个词其实并不是标准词汇,更类似于工业+大数据的组合概念。在工信部下发的《智能制造综合标准化体系建设指南》提到“工业大数据是工业领域完成相关信息化(包括企业内部的数据采集和集成,产业链横向的数据采集和集成,以及客户/用户和互联网上的大量外部数据)所产生的海量数据的基础上,经过深入分析和挖掘,为制造企业提供看待价值网络的全新视角,从而为制造业创造更大价值。”

这几年大数据的火爆是互联网行业引燃的,但制造行业与互联网行业的业务模式决定了数据特点及利用模式的巨大差异。工业大数据更关注数据本身,例如数据属性的准确定义,数据与数据之间的联系等。

工业大数据的除了具备4V特性外,还在微观层面体现在产品全属性,在宏观层面体现在产品全生命周期,在社会层面体现在上下游数据交换,在技术层面体现在基于物联网的虚拟物理数据融合。

工业大数据的价值和意义不言而喻,但面对种类繁多、尺度不一、模态多样的数据,如何进行有效管理和利用是对企业很大的考验。从数据管理角度,我们将数据分为公共类数据、管理类数据、产品类数据和实时类数据。

  • 公共类数据 :主要指企业内静态不变且跨业务部门共享的数据,如客户、供应商、产品、物料等数据,也就是主数据。目前由于MBD的概念兴起,如电子元气件、标准件等三维模型也作为制造企业主数据进行管理。

  • 企业管理类数据 :主要指企业运营过程中的,财务、人力、物资等管理数据,传统的商务智能和数据仓库的应用领域就集中在企业管理领域。这里的数据以结构化数据为主。

  • 产品工程类数据 :主要指在设计、工艺、制造等环节生成的各类BOM,包括BOM结构、物料属性信息、相关图文档信息等。以 非结构化数据为主。

  • 物联实时类数据 :产品制造过程中,在制品、生产线、人员等制造资源的状态数据;产品服役过程中,外部环境、操作使用和产品运营数据等。以实时数据和音视频监控数据为主。

按照企业信息化建设阶段,一般分为单点建设、集成应用、集中管控等三个阶段。正如在数据集成应用阶段,SOA和物联网技术风起云涌,在数据集中管控阶段Hadoop和机器学习等技术正在兴起。各企业的大数据应用在数据集成和数据集中阶段,所以制造企业一方面通过建设应用系统集成平台,利用SOA技术实现异构业务系统间、异种智能设备间的主数据和BOM数据的管理;另一方面通过建设大数据环境,利用Hadoop、Spark等工具实现海量数据的采集、存储、管理和利用。

如下图所示,构建集中的数据管理和应用环境,实现分布在企业各处的数据采集和集成。


工业大数据:面向产品全寿期的xBOM


产品工程数据是工业大数据的重要组成部分,企业运营业务因多采用成熟的套装软件进行管理故数据多以结构化数据为主,产品工程数据多以非结构化图文档数据为主,集中体现大数据的“大”。产品工程数据的“大”,在微观层面体现在产品的全属性,在宏观层面体现在产品的全生命。


第一节 产品全寿期数据是什么

工业4.0将产品(Product)看成一个系统(System),从而将PLM升级为SysLM,并力主以SysLM为主导控制工业生产的复杂性。SysLM与PLM最大的不同,即将产品研制过程中流程、工具、组织等要素也纳入产品数据的管理范畴,即不再是产品研制的结果数据而是包括产品研制的过程数据。美林数据提出不依赖于任一厂商的独立的数据电子仓库的数据仓储方案,搭建一个独立、开放、标准的产品数据仓储环境并为相关业务定制相关的知识和服务。


第二节 产品全寿期数据如何组织

在制造行业以BOM的方式进行产品数字化定义,已经成为事实标准。制造企业也是以BOM做主线组织产品的研发及生产。BOM (Bill of Material, 物料清单)是企业产品数据管理的核心,贯穿于企业各种经营活动,是产品数据整个生命传递和共享的载体,是各业务系统间进行信息集成的桥梁和纽带。所以美林也采用BOM的方式进行数据的组织和利用。但由于产品研制各环节都定义了适合本环节的BOM,如设计BOM、工艺BOM、制造BOM、服务BOM等,这些BOM属性不同、结构不同难以支撑企业级产品的数据综合管理和利用。所以美林数据提出xBOM的概念,即以产品研制生产的主价值链为主线,通过BOM多视图的组织方式完成产品全生命周期数据的管理及应用,协调研制两端产品数据管理与应用的冲突,实现产品数据的共享与追溯。


第三节 产品全寿期数据如何利用

xBOM能够帮助企业实现产品数据的电子化管理,方便对数据的查阅及质量问题追溯等应用,减少了企业的问题成本;通过BOM结构借用关系、版本管理,实现零部件的复用关系追溯,方便掌握工程变更、设备换代等对业务的影响范围;打通了企业研制主价值链的业务流程,实现产品数据在PDM、MES、ERP等系统间的共享与交换。具体应用如下:

1、产品工程变更及质量追溯:

管理产品BOM数据中零部件的借用关系,实现某一零部件在不同批次的产品之间的追溯,快速定位质量问题根源与影响范围,为企业减少损失,如下图所示:


2、产品电子履历及集成共享:

在CAD、PDM、CAPP、ERP、MES等研发相关的系统间集成共享BOM数据,打通企业生产研制主价值链,如下图所示:




工业大数据(总):构建制造型企业新型能力


工信部的数据显示:“中国制造业约占整个世界制造业20%的份额,在500余种主要产品中,我国有220多种产量位居世界第一。2014年,我国共有100家企业入选‘财富世界500强’,其中制造业企业占56家”。但长期粗放式发展之后,中国制造业发展面临着稳增长和调结构的双重困境,进入了“爬坡过坎”的关键时刻。正如国务院发布的《中国制造2025》提到,“新一代信息技术与制造业深度融合,正在引发影响深远的产业变革,形成新的生产方式、产业形态、商业模式和经济增长点…但我国仍处于工业化进程中,与先进国家相比还有较大差距。制造业大而不强…”。


与此同时,德国提出了工业4.0,美国提出了工业互联网的概念希望藉此实现制造业的复兴。中国提出《中国制造2025》正是要推动制造业向中高端迈进,以大数据、物联网、云计算等新一代信息技术将引爆这一轮产业变革,加速传统制造企业的转型升级。


工业大数据与德国工业4.0、中国制造2025的关系

>>>>

工业4.0、中国制造2025的核心是工业大数据


2013年4月,德国政府汉诺威工业博览会上正式推出“工业4.0”战略,其目的是为了提高德国工业的竞争力,在新一轮工业革命中占领先机。该战略通过充分利用信息通讯技术和网络空间虚拟系统(信息物理系统Cyber-Physical System)相结合的手段,将制造业向智能化转型。

2015年5月8日,国务院公布《中国制造2025》,这是中国版的“工业4.0”规划。该规划提到“加快推动新一代信息技术与制造技术融合发展,把智能制造作为两化深度融合的主攻方向;着力发展智能装备和智能产品,推进生产过程智能化,培育新型生产方式,全面提升企业研发、生产、管理和服务的智能化水平。

无论是“德国工业4.0”还是“中国制造2025”,都提到了智能化和互联网化,而智能化和互联网化的核心是:一方面利用互联网技术实现传统的以产品为中心变为以客户为中心,加强客户需求预测并尝试让客户参与产品研发,提供个性化的产品、服务及体验;另一方面采集大量消费数据动态调整生产方式以快速适应客户需求变化,即变大规模批量生产为大规模定制生产;最后一方面利用企业内部营销、科研、生产、采购等经营数据,为企业经营解决提供依据,实现企业经营透明。随着企业智能化和互联网化水平的提升,企业拥有了越来越多的数据,而这些数据反过来有提升了企业智能化和互联网化的水平。


>>>>

利用大数据驱动业务发展,打造企业新型能力


制造型企业面临着客户需求个性化,产品上市时间短,研制成本提高等巨大挑战。这种挑战本身更多体现在企业与企业之间如何以更低的成本、更高的质量、更快的速度满足客户多样的需求。所以传统方式很难解决大数据时代的企业问题,需要有创新的手段来解决。目前越来越多的企业通过大数据来驱动业务创新,提升产品质量、降低研制成本、加快上市周期。

全球航空发动机制造企业劳斯莱斯公司,在飞机引擎的制造和维护过程中,都配备了劳斯莱斯引擎健康模块。所有的劳斯莱斯引擎,不论是飞机引擎,直升机引擎还是舰艇引擎都配备了大量的传感器,用来采集引擎的各个部件,各个系统,以及各个子系统的数据。这些信息通过专门的算法,进入引擎监控模块的数据采集系统中。利用这些数据的分析结果,不仅可以帮助劳斯莱斯提前发现故障,还可以帮助客户更及时有效地安排引擎检测和维修。通过算法的不断改进,劳斯莱斯如今已经可以通过数据分析预测可能出现的技术问题。

劳斯莱斯引擎使用寿命在过去30年里延长了10倍,比同行类似引擎的寿命长10年左右;尤其重要的是飞行安全得到了更大的保障。成功之处在于打破了制造业和服务业的界线,并使两者相得益彰:技术先进的制造部门为售后服务提供可靠的技术保证。优质的售后服务不仅巩固现有销售市场份额,还不断挖掘越来越大的潜在市场。


>>>>

“盘活存量数据、用好增量数据”,推动企业转型升级


制造型企业在信息化的每个发展阶段都会有大量的数据处理要求并且会因为大量的业务活动产生各式的数据各样,只要采用数据驱动业务的方式进行业务活动就是大数据,大数据是企业信息化发展到当前阶段的必然结果。所以工业大数据的利用不仅仅是信息化基础设施建设,更重要的是采用数据思维来管理和创新业务,大数据应是管理创新的手段,优化全业务流程和提供业务管理工具。所以制造型企业大数据应用的难点是打通企业数据采集、集成、管理、分析的产业链条,帮助业务人员养成使用数据的习惯。在这方面互联网企业走在前面,值得制造型企业学习。

2012年12月,阿里宣布在集团管理层面设立首席数据官(Chief Data Officer)岗位,负责全面推进阿里巴巴集团成为“数据分享平台”的战略并成立了数据委员会,委员会的成员是各个数据部门的领导。该数据委员会主要职责是协同不同数据部门的工作,制定整个集团数据应用的方向和规划,协同各个部门使用数据,打通商业运营、做(基础)数据、(构建)数据模型等产业链条各环节。避免传统上做数据的人不知道别人怎么用,用数据的人不知道数据怎么来的;而做数据模型不知道数据是否稳定;用数据模型的人不知道数据模型究竟是怎样的,甚至不相信数据模型的问题。


工业大数据的产生及特点


工业大数据是制造型企业创新转型的驱动力和催化剂,随着三维设计、3D打印、机器人技术等在制造型企业广泛应用。工业大数据广泛分布在产品设计、制造、物流、服役等各环节,具体如下:

数字化设计 :如飞机全数字化设计:波音公司利用CATIA软件设计波音777的300万个零部件的 尺寸和形状数据;

智能化制造 :以智能工业机器人为典型代表的智能制造装备已经开始在多个领域得到应用; 我国今年的工业机器人超过日本。

网络化监控 :大型工业装备运行状态网络化远程动态监测:例如,波音737发动机在飞行中每 30分钟产生10TB数据;陕鼓动力实现数百台旋转机械远程在线监测及故障诊断。

物联化管理 :工业生产过程开始大量使用RFID实现零件与产品管理。


>>>>

工业大数据区别其他行业大数据有自身的特点和挑战


一是多源性获取,数据分散、非结构化数据比例大 :工业大数据来源广泛且分散,有来源于产品制造现场工控网监控数据,有来源于互联网的客户、供应商数据,有来源于企业内网的经营管理数据。海量异构多源多类数据难以有效集成,语义描述困难,不能实现面向系统生命周期管理的数据协同管理;

二是数据关联性强,有关联也要有因果 :工业大数据的产生和应用都围绕产品全生命周期、企业主价值链等,数据间关联性强且分析准确性要求高。不但要利用大数据给出决策也要用大数据给出决策依据。工业大数据预测精度低,准确性和可靠性不高,无法满足安全性要求;

三是持续采集、具有鲜明的动态时空特性 : 工业大数据来源于工控网络和传感设备,具有实时性强、连续性、稳定性要求高等特点,需要采用可靠的数据采集、存储、管理的工具进行管理,另外涉及国计民生领域还要求整个平台安全可控。工业大数据分析的实时性要求高,动态控制困难,量化难度大;

四是与具体工业领域紧密相关 :工业大数据产生依赖于CPS网络和智能产品,但目前面向信息物理融合系统的分析方法单一,无法实现闭环、多层次、多阶段、自比较等的综合分析;面向智能设备和智能产品的故障检测能力不足,健康预测管理水平低,无法实现面向产品可靠性的深层次分析。


工业大数据的重点研究方向


为了应对工业大数据分散、形式多样、预测精度高等挑战,国内外研究机构与厂商开展了基于产品全生命周期的数据集成和管理,基于数据挖掘的数据分析应用等方面的技术研究与实践,下面分别介绍。

研究方向1:基于MBD和物联网的数据集成技术

CAX工具数据集成技术: 面向产品设计过程中结构设计、电气设计、仿真、试验等过程,一方面定义产品所需标准件、材料、元器件的参数模型和实体模型及标准标准,供不同CAX工具共享使用,另一方面集中管理CAX工具输入输出参数等过程数据并形成设计知识。

智能装备数据集成技术: 面向车间各类对象的实时监控和管理,底层采用传感器对环境和设备进行信息采集,采用电子标签对物料、人员、工具工装等进行标识和跟踪,通过数据采集和处理实现信息的可靠高效传输,实现人机料法环测等生产要素的状态监控和集成管理。

异构业务系统数据集成技术: 面向工厂内部ERP、PDM、MES、QIS、TDM等业务系统,利用企业门户、企业服务总线、流程平台等集成工具实现各业务系统间界面、服务、流程和数据的集成,最终达到跨业务部门和业务系统的数据融合和流程贯通。

研究方向2:基于产品全生命周期数据管理技术

产品全生命周期管理不同于传统的PDM,它将分散在设计单位、生产单位、供应商、客户等地理分散、形式不同的“产品数据”通过工作流平台和产品全生命周期模型,连接为一种单一的、标准的、真正的产品信息资源的能力。它包括产品设计、仿真、试验制造的数据,还集成来自企业内外部数据,如销售、市场、质量、制造、供应商、客户使用、产品报废处理等数据,从而建立起规范的产品信息来源。这种信息资源保存整个产品开发决策过程的信息,包括产品的特征描述、功能描述以及对设计和资源的考虑,从而跟踪整个项目进度,并为将来启动的新项目或产品改进项目提供知识。

产品全生命周期管理的关键在于产品生命周期的建模技术、集成数据环境技术和设计制造协同技术。

产品全生命周期建模技术: 产品全生命周期建模的目的是建立面向产品生命周期的统一的、具有可扩充性的能表达完整信息的产品模型,该模型能随着产品研制自动扩张,并从设计模型自动映射为不同目的的模型,如可制造性评价模型,成本估算模型、可装配性模型、可维护性模型等,同时产品模型应能全面表达和评价与产品全生命周期相关的性能指标。

集成数据环境技术: 产品全生命周期的数据分开存放,系统提供数据的联邦机制,分散在网络上的用户对数据进行存取时,所有数据对用户都应是透明的,所以需要一个电子仓库对分散在企业内外部产品及相关数据进行存储和增删修改操作。当然产品全生命周期数据符合大数据的4V特征,传统数据库管理系统难以支撑,需要大数据平台和技术支撑。







请到「今天看啥」查看全文