专栏名称: 新智元
智能+中国主平台,致力于推动中国从互联网+迈向智能+新纪元。重点关注人工智能、机器人等前沿领域发展,关注人机融合、人工智能和机器人革命对人类社会与文明进化的影响,领航中国新智能时代。
目录
相关文章推荐
爱可可-爱生活  ·  本文创新性地提出了 MinionS ... ·  昨天  
爱可可-爱生活  ·  [LG]《Slamming: ... ·  昨天  
歸藏的AI工具箱  ·  Claude 3.7 Sonnet ... ·  昨天  
歸藏的AI工具箱  ·  Claude 3.7 Sonnet ... ·  昨天  
爱可可-爱生活  ·  突破性的“一步扩散”生成模型 查看图片 ... ·  昨天  
51好读  ›  专栏  ›  新智元

【谷歌 GAN 生成人脸】对抗创造新艺术风格,128 像素扩展到 4000

新智元  · 公众号  · AI  · 2017-06-15 10:29

正文

新智元编译

来源:mtyka.github.io

译者:文强


【新智元导读】 谷歌员工 Mike Tyka 撰文介绍了他使用 GAN 生成人物肖像的项目,结果值得一看,最高的分辨率有 4k×4k。需要指出,下面展示的结果是经过挑选的, 但 GAN 生成的这些人物肖像别有一种艺术风格。



(文/Mike Tyka)一段时间以来,我一直在尝试使用生成神经网络制作人物肖像。早期试验基于类似 Deep Dream 的方法,但最近我开始将精力集中在 GAN 上面。当然,无论在什么时候,高精度和精确的细节都是很难实现的,使用 GAN 生成人脸也一样。首先,这些网络的感受野往往不到 256×256 像素的大小。


解决这个问题的一种办法是使用 stack GAN。我用基于 stack GAN 的方法,终于将像素提升到 768×768 的大小,最多使用 3 个阶段 stack 将像素提升到了 4k×4k。我不在意结果是否真实,但细节纹理逼真很重要。


为了减少 artifact(模糊不清的地方),我需要应对 mode collapse 等各种问题。具体说,光滑皮肤和多毛皮肤之间,第二阶段 GAN 是 meta stable,往往导致输出变成一块一块的。


现在我使用的最多是 vanilla GAN。当然,我觉得我也该试一下 WGAN、CramerGAN 或 BEGAN,因为大家都说后面几种收敛更好。


下面就是我使用 GAN 生成的空想人物肖像(我选了效果比较好的放上来)。



生成图像的质量与低分辨率输出(lowres output)实现密切相关。我通常在第一阶段生成 128×128 或者 256×256 像素的结果,然后在第二阶段提升至 768×768 或者 1024×1024。大多数情况下,生成的结果都很糟糕,远远没有我挑选出来的这几张好,但有些时候会出现非常富有艺术性的图像,偶尔看上去还像是有艺术风格诞生。



我在最后的第三阶段将像素提升到 4k。但是,实际上我并没有这个像素级别的训练数据,也就是说,网络做的只是大致预测边缘是否平滑等等。







请到「今天看啥」查看全文