专栏名称: 小白学视觉
本公众号主要介绍机器视觉基础知识和新闻,以及在学习机器视觉时遇到的各种纠结和坑的心路历程。
目录
相关文章推荐
中国航务周刊  ·  HMM将收购这家航运企业! ·  3 天前  
学习大国  ·  咋回事儿,AI真的来抢“铁饭碗”了? ·  4 天前  
半月谈  ·  品读 | 我喜欢她的人生态度 ·  3 天前  
半月谈  ·  “80后死亡率突破5.2%”?错得离谱! ·  3 天前  
51好读  ›  专栏  ›  小白学视觉

最全的损失函数汇总

小白学视觉  · 公众号  ·  · 2023-12-03 22:36

正文

点击上方 小白学视觉”,选择加"星标"或“置顶

重磅干货,第一时间送达

作者:mingo_敏

编辑:深度学习自然语言处理

链接: https://blog.csdn.net/shanglianlm/article/details/85019768


tensorflow和pytorch很多都是相似的,这里以pytorch为例。



19种损失函数



1. L1范数损失 L1Loss


计算 output 和 target 之差的绝对值。
torch.nn.L1Loss(reduction='mean')
参数:

reduction-三个值,none: 不使用约简;mean:返回loss和的平均值;sum:返回loss的和。默认:mean。


2 均方误差损失 MSELoss
计算 output 和 target 之差的均方差。
torch.nn.MSELoss(reduction='mean')
参数:

reduction-三个值,none: 不使用约简;mean:返回loss和的平均值;sum:返回loss的和。默认:mean。


3 交叉熵损失 CrossEntropyLoss
当训练有 C 个类别的分类问题时很有效. 可选参数 weight 必须是一个1维 Tensor, 权重将被分配给各个类别. 对于不平衡的训练集非常有效。
在多分类任务中,经常采用 softmax 激活函数+交叉熵损失函数,因为交叉熵描述了两个概率分布的差异,然而神经网络输出的是向量,并不是概率分布的形式。所以需要 softmax激活函数将一个向量进行“归一化”成概率分布的形式,再采用交叉熵损失函数计算 loss。



torch.nn.CrossEntropyLoss(weight=None,ignore_index=-100, reduction='mean')
参数:

weight (Tensor, optional) – 自定义的每个类别的权重. 必须是一个长度为 C 的 Tensor
ignore_index (int, optional) – 设置一个目标值, 该目标值会被忽略, 从而不会影响到 输入的梯度。
reduction-三个值,none: 不使用约简;mean:返回loss和的平均值;sum:返回loss的和。默认:mean。


4 KL 散度损失 KLDivLoss
计算 input 和 target 之间的 KL 散度。KL 散度可用于衡量不同的连续分布之间的距离, 在连续的输出分布的空间上(离散采样)上进行直接回归时 很有效.
torch.nn.KLDivLoss(reduction='mean')
参数:

reduction-三个值,none: 不使用约简;mean:返回loss和的平均值;sum:返回loss的和。默认:mean。


5 二进制交叉熵损失 BCELoss
二分类任务时的交叉熵计算函数。用于测量重构的误差, 例如自动编码机. 注意目标的值 t[i] 的范围为0到1之间.
torch.nn.BCELoss(weight=None, reduction='mean')
参数:

weight (Tensor, optional) – 自定义的每个 batch 元素的 loss 的权重. 必须是一个长度为 “nbatch” 的 的 Tensor


6 BCEWithLogitsLoss
BCEWithLogitsLoss损失函数把 Sigmoid 层集成到了 BCELoss 类中. 该版比用一个简单的 Sigmoid 层和 BCELoss 在数值上更稳定, 因为把这两个操作合并为一个层之后, 可以利用 log-sum-exp 的 技巧来实现数值稳定.
torch.nn.BCEWithLogitsLoss(weight=None, reduction='mean', pos_weight=None)
参数:

weight (Tensor, optional) – 自定义的每个 batch 元素的 loss 的权重. 必须是一个长度 为 “nbatch” 的 Tensor

7 MarginRankingLoss


torch.nn.MarginRankingLoss(margin=0.0, reduction='mean')
对于 mini-batch(小批量) 中每个实例的损失函数如下:

参数:

margin:默认值0


8 HingeEmbeddingLoss


torch.nn.HingeEmbeddingLoss(margin=1.0,  reduction='mean')
对于 mini-batch(小批量) 中每个实例的损失函数如下:

参数:

margin:默认值1

9 多标签分类损失 MultiLabelMarginLoss


torch.nn.MultiLabelMarginLoss(reduction='mean')
对于mini-batch(小批量) 中的每个样本按如下公式计算损失:



10 平滑版L1损失 SmoothL1Loss


也被称为 Huber 损失函数。
torch.nn.SmoothL1Loss(reduction='mean')

其中



11 2分类的logistic损失 SoftMarginLoss


torch.nn.SoftMarginLoss(reduction='mean')



12 多标签 one-versus-all 损失 MultiLabelSoftMarginLoss


torch.nn.MultiLabelSoftMarginLoss(weight=None, reduction='mean')



13 cosine 损失 CosineEmbeddingLoss


torch.nn.CosineEmbeddingLoss(margin=0.0, reduction='mean')

参数:

margin:默认值0

14 多类别分类的hinge损失 MultiMarginLoss


torch.nn.MultiMarginLoss(p=1, margin=1.0, weight=None,  reduction='mean')

参数:

p=1或者2 默认值:1
margin:默认值1

15 三元组损失 TripletMarginLoss


和孪生网络相似,具体例子:给一个A,然后再给B、C,看看B、C谁和A更像。



torch.nn.TripletMarginLoss(margin=1.0, p=2.0, eps=1e-06, swap=False, reduction='mean')

其中:




16 连接时序分类损失 CTCLoss
CTC连接时序分类损失,可以对没有对齐的数据进行自动对齐,主要用在没有事先对齐的序列化数据训练上。比如语音识别、ocr识别等等。
torch.nn.CTCLoss(blank=0, reduction='mean')
参数:


reduction-三个值,none: 不使用约简;mean:返回loss和的平均值;sum:返回loss的和。默认:mean。


17 负对数似然损失 NLLLoss
负对数似然损失. 用于训练 C 个类别的分类问题.
torch.nn.NLLLoss(weight=None, ignore_index=-100,  reduction='mean')
参数:

weight (Tensor, optional) – 自定义的每个类别的权重. 必须是一个长度为 C 的 Tensor






请到「今天看啥」查看全文


推荐文章
中国航务周刊  ·  HMM将收购这家航运企业!
3 天前
半月谈  ·  品读 | 我喜欢她的人生态度
3 天前
网易梦幻西游手游  ·  灵儿八卦本 | 一声妖王引发的惨案......
8 年前
趣味漫画  ·  补办
8 年前