@misc{huozi, author = {Huozi-Team}. title = {Huozi: Leveraging Large Language Models for Enhanced Open-Domain Chatting} year = {2024}, publisher = {GitHub}, journal = {GitHub repository} howpublished = {\url{https://github.com/HIT-SCIR/huozi}} }
七、参考文献
[1] Jiang A Q, Sablayrolles A, Roux A, et al. Mixtral of Experts[J]. arXiv preprint arXiv:2401.04088, 2024.
[2] Cai W, Jiang J, Wang F, et al. A survey on mixture of experts[J]. arXiv preprint arXiv:2407.06204, 2024.
[3] Dou L, Liu Q, Zeng G, et al. Sailor: Open Language Models for South-East Asia[J]. arXiv preprint arXiv:2404.03608, 2024.
[4] Provilkov I, Emelianenko D, Voita E. BPE-dropout: Simple and effective subword regularization[J]. arXiv preprint arXiv:1910.13267, 2019.
[5] Cui Y, Yang Z, Yao X. Efficient and effective text encoding for chinese llama and alpaca[J]. arXiv preprint arXiv:2304.08177, 2023.
[6] Huang Y, Bai Y, Zhu Z, et al. C-eval: A multi-level multi-discipline chinese evaluation suite for foundation models[J]. arXiv preprint arXiv:2305.08322, 2023.
[7] Li H, Zhang Y, Koto F, et al. CMMLU: Measuring massive multitask language understanding in Chinese[J]. arXiv preprint arXiv:2306.09212, 2023.
[8] Zhang X, Li C, Zong Y, et al. Evaluating the Performance of Large Language Models on GAOKAO Benchmark[J]. arXiv preprint arXiv:2305.12474, 2023.
[9] Hendrycks D, Burns C, Basart S, et al. Measuring massive multitask language understanding[J]. arXiv preprint arXiv:2009.03300, 2020.
[10] Zellers R, Holtzman A, Bisk Y, et al. Hellaswag: Can a machine really finish your sentence?[J]. arXiv preprint arXiv:1905.07830, 2019.
[11] Cobbe K, Kosaraju V, Bavarian M, et al. Training verifiers to solve math word problems[J]. arXiv preprint arXiv:2110.14168, 2021.
[12] Chen M, Tworek J, Jun H, et al. Evaluating large language models trained on code[J]. arXiv preprint arXiv:2107.03374, 2021.
[13] Zheng L, Chiang W L, Sheng Y, et al. Judging LLM-as-a-judge with MT-Bench and Chatbot Arena[J]. arXiv preprint arXiv:2306.05685, 2023.