专栏名称: 机器学习研究会
机器学习研究会是北京大学大数据与机器学习创新中心旗下的学生组织,旨在构建一个机器学习从事者交流的平台。除了及时分享领域资讯外,协会还会举办各种业界巨头/学术神牛讲座、学术大牛沙龙分享会、real data 创新竞赛等活动。
目录
相关文章推荐
智先生  ·  裁员了,很严重,大家做好准备吧! ·  昨天  
智先生  ·  裁员了,很严重,大家做好准备吧! ·  昨天  
爱可可-爱生活  ·  恭喜@夏日圆周 ... ·  4 天前  
爱可可-爱生活  ·  【lumen:一款AI驱动的命令行工具,帮你 ... ·  1 周前  
51好读  ›  专栏  ›  机器学习研究会

【推荐】用Tensorflow实现深度学习人脸识别工作流

机器学习研究会  · 公众号  · AI  · 2017-08-08 22:32

正文



点击上方“机器学习研究会”可以订阅哦
摘要
 

转自:爱可可-爱生活 

In my last tutorial , you learned about convolutional neural networks and the theory behind them. In this tutorial, you’ll learn how to use a convolutional neural network to perform facial recognition using Tensorflow, Dlib, and Docker.

Overview

  • Introduction to Facial Recognition

  • Preprocessing Images using Facial Detection and Alignment

  • Generating Facial Embeddings in Tensorflow

  • Training an SVM Classifier

Prerequisites

  • Basic understanding of Linear Algebra

  • Basic understanding of Convolutional Neural Networks

  • Basic Tensorflow understanding



Introduction to Facial Recognition Systems

Facial recognition is a biometric solution that measures unique characteristics about one’s face. Applications available today include flight checkin, tagging friends and family members in photos, and “tailored” advertising.

To perform facial recognition, you’ll need a way to uniquely represent a face. In 1960, Woodrow Bledsoe used a technique involving marking the coordinates of prominent features of a face. Among these features were the location of hairline, eyes and nose.

In 2015, researchers from Google released a paper, FaceNet, which uses a convolutional neural network relying on the image pixels as the features, rather than extracting them manually. It achieved a new record accuracy of 99.63% on the LFW dataset.

FaceNet: In the FaceNet paper, a convolutional neural network architecture is proposed. For a loss function, FaceNet uses “triplet loss”. Triplet loss relies on minimizing the distance from positive examples, while maximizing the distance from negative examples.


链接:

https://hackernoon.com/building-a-facial-recognition-pipeline-with-deep-learning-in-tensorflow-66e7645015b8


原文链接:

https://m.weibo.cn/1402400261/4138385772066325

“完整内容”请点击【阅读原文】
↓↓↓