专栏名称: 机器学习研究会
机器学习研究会是北京大学大数据与机器学习创新中心旗下的学生组织,旨在构建一个机器学习从事者交流的平台。除了及时分享领域资讯外,协会还会举办各种业界巨头/学术神牛讲座、学术大牛沙龙分享会、real data 创新竞赛等活动。
目录
相关文章推荐
爱可可-爱生活  ·  图解“一人一公司” ... ·  昨天  
爱可可-爱生活  ·  【Pydantic AI Agents ... ·  昨天  
爱可可-爱生活  ·  【ts-rs:Rust与TypeScript ... ·  2 天前  
爱可可-爱生活  ·  【OS-Genesis:自动化GUI ... ·  4 天前  
51好读  ›  专栏  ›  机器学习研究会

【推荐】(Python)LSTM时序预测

机器学习研究会  · 公众号  · AI  · 2017-04-08 19:01

正文



点击上方“机器学习研究会”可以订阅哦
摘要
 

转自:爱可可-爱生活

The Long Short-Term Memory recurrent neural network has the promise of learning long sequences of observations.

It seems a perfect match for time series forecasting, and in fact, it may be.


In this tutorial, you will discover how to develop an LSTM forecast model for a one-step univariate time series forecasting problem.

After completing this tutorial, you will know:

  • How to develop a baseline of performance for a forecast problem.

  • How to design a robust test harness for one-step time series forecasting.

  • How to prepare data, develop, and evaluate an LSTM recurrent neural network for time series forecasting.

Let’s get started.


Tutorial Overview

This is a big topic and we are going to cover a lot of ground. Strap in.

This tutorial is broken down into 9 parts; they are:

  1. Shampoo Sales Dataset

  2. Test Setup

  3. Persistence Model Forecast

  4. LSTM Data Preparation

  5. LSTM Model Development

  6. LSTM Forecast

  7. Complete LSTM Example

  8. Develop a Robust Result

  9. Tutorial Extensions


Python Environment

This tutorial assumes you have a Python SciPy environment installed. You can use either Python 2 or 3 with this tutorial.

You must have Keras (2.0 or higher) installed with either the TensorFlow or Theano backend.

The tutorial also assumes you have scikit-learn, Pandas, NumPy and Matplotlib installed.

If you need help with your environment, see this post:


链接:

http://machinelearningmastery.com/time-series-forecasting-long-short-term-memory-network-python/


原文链接:

http://weibo.com/1402400261/EDv2dDzSa?from=page_1005051402400261_profile&wvr=6&mod=weibotime&type=comment#_rnd1491644913611

“完整内容”请点击【阅读原文】
↓↓↓