专栏名称: 新智元
智能+中国主平台,致力于推动中国从互联网+迈向智能+新纪元。重点关注人工智能、机器人等前沿领域发展,关注人机融合、人工智能和机器人革命对人类社会与文明进化的影响,领航中国新智能时代。
目录
相关文章推荐
宝玉xp  ·  谢谢支持,来自我昨天写的《AI ... ·  2 天前  
爱可可-爱生活  ·  晚安~ #晚安# -20250204224327 ·  2 天前  
宝玉xp  ·  转发微博-20250204101947 ·  3 天前  
爱可可-爱生活  ·  【[58星]ComfyUI_LoRA_Sid ... ·  4 天前  
51好读  ›  专栏  ›  新智元

一张显卡看遍天下电影!智源联合高校开源Video-XL打破长视频理解极限,95%准确率刷爆纪录

新智元  · 公众号  · AI  · 2024-10-28 15:51

主要观点总结

智源研究院联合多所高校推出了小时级的超长视频理解大模型Video-XL,能够用一张80G显卡处理小时级视频。该模型借助语言模型的原生能力对长视觉序列进行压缩,实现了良好的泛化能力,并在多个主流长视频理解基准评测中排名第一。Video-XL有望在电影摘要、视频异常检测、广告植入检测等场景展现出广泛应用价值。

关键观点总结

关键观点1: Video-XL模型的特点

推出了小时级的超长视频理解大模型Video-XL;借助语言模型的原生能力对长视觉序列进行压缩;在多个主流长视频理解基准评测中排名第一;具有良好的泛化能力;可在电影摘要、视频异常检测、广告植入检测等场景广泛应用。

关键观点2: Video-XL模型的优势

仅需一块80G显卡即可处理小时级视频;在效率和性能之间实现了良好的平衡;保留了短视频理解的能力。

关键观点3: 模型结构

Video-XL整体模型结构和主流的MLLMs结构相似,由视觉编码器、视觉-语言映射器以及语言模型构成;针对多模态数据建立了一个统一的视觉编码机制。

关键观点4: 模型训练方式

Video-XL通过优化在压缩视觉信号下的生成质量进行训练;使用特殊的视觉摘要标记(VST)进行视觉上下文隐空间压缩;通过最小化自回归损失进行训练。


正文



新智元报道

编辑:编辑部 HYZ
【新智元导读】 长视频理解迎来新纪元!智源联手国内多所顶尖高校,推出了超长视频理解大模型Video-XL。仅用一张80G显卡处理小时级视频,未来AI看懂电影再也不是难事。

长视频理解是多模态大模型的核心能力之一,也是迈向通用人工智能(AGI)的关键一步。然而,现有的多模态大模型在处理10分钟以上的超长视频时,仍然面临性能差和效率低的双重挑战。
对此,智源研究院联合上海交通大学、中国人民大学、北京大学和北京邮电大学等多所高校,推出了小时级的超长视频理解大模型Video-XL。
Video-XL借助语言模型(LLM)的原生能力对长视觉序列进行压缩,不仅保留了短视频理解的能力,而且在长视频理解上展现了出色的泛化能力。
Video-XL相较于同等参数规模的模型,在多个主流长视频理解基准评测的多项任务中排名第一。
此外,Video-XL在效率与性能之间实现了良好的平衡, 仅需一块80G显存的显卡即可处理2048帧输入(对小时级长度视频采样),并在视频「大海捞针」任务中取得了接近95%的准确率。

仅需几秒钟,VideoXL便可以准确检索长视频中植入的广告内容( https://github.com/VectorSpaceLab/Video-XL/tree/main/examples ),也可以像人类一样准确理解电影中发生的主要事件(本视频仅用于学术研究,如有问题,请随时联系)

未来,Video-XL有望在 电影摘要、视频异常检测、广告植入检测 等应用场景中展现出广泛的应用价值,成为得力的长视频理解助手。

论文标题:Video-XL: Extra-Long Vision Language Model for Hour-Scale Video Understanding

论文链接:https://arxiv.org/abs/2409.14485

模型链接:https://huggingface.co/sy1998/Video_XL

项目链接:https://github.com/VectorSpaceLab/Video-XL

图1 不同长视频模型在单块80G显卡上支持的最大帧数及在Video-MME上的表现

背景介绍


使用MLLM进行长视频理解具有极大的研究和应用前景。然而,当前的视频理解模型往往只能处理较短的视频,无法处理十分钟以上的视频。

尽管最近研究社区出现了一些长视频理解模型,但这些工作主要存在以下问题:

  • 压缩视觉token带来的信息损失

为了使语言模型的固定窗口长度适应长视频带来的大量视觉token,众多方法尝试设计机制对视觉token进行压缩,例如LLaMA-VID主要降低token的数量,而MovieChat,MALMM则设计memory模块对帧信息进行压缩。然而,压缩视觉信息不可避免带来信息的损失和性能降低。

  • 性能和效率的不平衡
相关工作LongVA尝试finetune语言模型扩大其上下文窗口,并成功将短视频理解能力泛化到了长视频上。LongVila优化了 长视频训练的开销,提出了高效训练长视频训练的范式。然而,这些工作并未考虑推理时视频帧数增加带来的计算开销。

方法介绍


1. 模型结构

图2 Video-XL模型结构图
如图2所示,Video-XL的整体模型结构和主流的MLLMs结构相似,由视觉编码器(CLIP), 视觉-语言映射器(2-layer MLP)以及语言模型(Qwen-7B)构成。
特别之处在于,为了处理各种格式的多模态数据(单图,多图和视频),Video-XL建立了一个统一的视觉编码机制。
  • 针对多图和视频数据,将每帧分别输入CLIP;
  • 针对单图,将其划分为多个图像块,并将图像块输入CLIP进行编码。

因此,一个N帧的视频或者一个N图像块的图片都将统一标记成N×M视觉token。

2. 视觉上下文隐空间压缩

相比于以往长视频模型直接对视觉token压缩,Video-XL尝试利用语言模型对上下文的建模能力对长视觉序列进行无损压缩。对于视觉语言连接器输出的视觉信号序列:
其中n为视觉token的数量。Video-XL的目标在于将X压缩成更为紧凑的视觉表示C (|C|
受到Activation Beacon的启发,Video-XL引入了一种新的特殊标记,称为视觉摘要标记(VST),记为 。基于此可以将视觉信号的隐层特征压缩到VST在LLM中的激活表示中(每层的Key和Value值)。
具体而言,首先将视觉信号序列X分成大小为w的窗口(默认每个窗口长度为1440):
接着,对每个窗口首先确定压缩比,并插入一组VST标记,以交替的方式在视觉标记序列中插入。
在该过程中,视觉token表示的变化可以由以下公式表达:
LLM将逐个处理每个窗口进行编码,并使用额外的投影矩阵在每层自注意力模块中处理VST的隐藏值。
编码完成后,普通视觉标记的激活值被丢弃,而VST的激活值被保留并累积,作为处理后续窗口时的视觉信号代理。

3. 模型训练方式

Video-XL通过优化在压缩视觉信号下的生成质量来进行训练。
下一个token的预测通过以下公式进行计算:
其中Θ代表模型所有优化的参数,包含语言模型,视觉编码器、视觉语言连接器、VST的投影矩阵,以及VST的token embedding。
模型通过最小化标准的自回归损失进行训练,训练过程中不计算VST标记的损失(其标签设为-100),因为它们仅用于压缩。
同时,为了灵活支持不同的压缩粒度,训练时每个窗口的压缩比会从{2,4,8,12,16}中随机抽取。在推理时,可以根据具体的效率需求选择一个压缩比并应用于所有窗口。

4. 模型训练数据

在预训练阶段,Video-XL使用Laion-2M数据集优化视觉语言连接器。
在微调阶段,Video-XL充分利用了MLLM在各种多模态数据集上的能力。
  • 对于单图像数据,使用了Bunny 695k和Sharegpt-4o的57k张图片。
  • 对于多图像数据,使用了从MMDU提取的5k个数据。
  • 对于视频数据,收集了不同时长的视频样本,包括来自NExT-QA的32k样本,Sharegpt-4o的2k视频样本,CinePile的10k样本以及11k个带有GPT-4V视频字幕注释的私有数据。

为了增强长视频理解能力并释放视觉压缩机制的潜力,本工作开发了一个自动化的长视频数据生产流程,并创建了一个高质量数据集——视觉线索顺序数据(VICO)。
该流程首先从CinePile数据或YouTube等视频平台获取长视频,涵盖电影、纪录片、游戏、体育等开放领域的内容。每个长视频被分割成14秒的片段。
对于每个片段,本工作使用VILA-1.5 40B模型生成详细描述,包括动作序列和关键事件。基于这些描述,本工作利用ChatGPT将线索按时间顺序排列。
VICO数据集通过要求模型检索关键帧并检测时间变化,提升其长视频理解能力。

实验

1 . 评测基准

Video-XL选用多个主流视频理解评测基准,对于长视频理解任务,评测了VNBench、LongVideoBench、MLVU和Video-MME;对于短视频理解任务,评测了MVBench和Next-QA。

2. 评测结果

长视频理解:

表1 Video-XL在MLVU和VideoMME的性能

表2 Video-XL在VNBench和LongVideoBench上的性能
如表1和表2所示Video-XL在多个主流的长视频评测基准上展现了卓越性能。
  • 在VNBench上准确率超过了目前最好的长视频模型大约10%;
  • 在MLVU的验证集上,仅仅具有7B参数的Video-XL甚至在单项选择任务上超越了GPT-4o模型;
  • 在Video-MME和LongVideoBench等数据集上,Video-XL也在同等量级规模的长视频理解模型中排名第一。

超长视频理解:
Video-XL通过进行了视频「大海捞针」测试来评估其处理超长上下文的能力。
LLaVA-NexT-Video和LongLLaVA都采用了简单的位置信息外推算法,但在输入更多上下文时,仍然难以理解关键信息。虽然LongVA通过微调LLM来处理更长的输入,但高昂的计算成本限制了其在单块80G GPU上处理约400帧的能力。
相比之下,Video-XL在相同硬件条件下,以16倍压缩比和2048帧输入,达到了近95%的准确率。这表明,Video-XL在准确性和计算效率之间实现了最佳平衡。






请到「今天看啥」查看全文