专栏名称: 数盟
数盟(数据科学家联盟)隶属于北京数盟科技有限公司,数盟致力于成为培养与发现“数据科学家”的黄埔军校。 数盟服务包括:线下活动、大数据培训。 官网:http://dataunion.org,合作:[email protected]
目录
相关文章推荐
51好读  ›  专栏  ›  数盟

AI惊艳世界的10个瞬间: 10个生成式对抗系统的最佳应用

数盟  · 公众号  · 大数据  · 2017-09-11 22:00

正文

编者按:本文来自微信公众号 “硅谷密探”(ID:guigudiyixian) ,36氪经授权发布。

说起“教授”计算机如何完成人类工作,生成式对抗系统(GAN)是现有最有效的手段之一。虽然人们一直被告知“竞争可以激发出更好的表现”,但是只有在有了生成式对抗系统之后这一“从竞争中学习”的逻辑才被发展到了造福产业生产的高度。

具体来说,生成式对抗系统是由不同的AI实体彼此竞争,以达到更好地解决自己任务的目的。想象一下,如果有一个恶意软件程序和一个安保机器人程序同时对抗,彼此都毫不放松的想要在对方的制约下更好的完成自己的职责。那么在这个过程中,他们双方都可以将自己的任务(入侵VS保护)完成的越来越好。

生成式对抗系统最初是由蒙特利尔大学的 Ian Goodfellow 首先创造出来。而最近,它已经向人们显示出了“无监督学习”的强大威力。

那么究竟生成式对抗系统是如何工作的呢?

每个生成式对抗系统都有两个相互竞争的神经网络。其中一个将噪音录入并且生成样本(生成器)。而另一网络则能够分辨正常的实验数据和从生成器获得的样本(分辨器)。这两个网络在进行一个持续的游戏,生成器会一直学习如何能够成功欺骗分辨器,而分辨器则能逐步增强自己分辨两种数据的能力。这两个系统同时接受长期的训练,终于在百万次的“对抗”之后,生成器生成的样本已经和真实的数据几乎没有差异。

简单来说,生成器就是一个造假者不断想要制造虚假的资料,而分辨器则是警察,其职责就是将虚假的资料分辨出来。因为整个过程都是被现有计算机器自动化执行的,生成式对抗系统已经可以实现许多令人惊叹的任务。而以下就是至今为止生成式对抗系统最为惊艳世界的应用。

1. 当机器有了想象力

谷歌的Deep Dream可以制造出有着幻觉效果的图像

Google Brain的研究者已经找到了可以从视觉上展现他们的精神网络,Google Net,如何看待事物本质的方法。而通过这种方法,生成式对抗系统制造出了可以被称为有着迷幻效果图像。

其实,这些如梦似幻的图片,是一个给图片分类的功能刻意过度处理图像时产生的副产品。而在这个过程中涉及到的主要系统就是Deep Dream。

Deep Dream究竟是如何工作的呢?你首先要给他一个图像,然后他会主动去寻找他在之前训练中学会的认识的一切。神经网络可能会发现一些类似于一只狗,一个房子这一类的意象。而Google Deep Dream就可能强化这些被认出来的事物。

打个比方,如果现有的认知网络在你输入一个图像时会认为“看,这个图像有40%的可能是一只狗”,那么,下一次,它会在自动完善后说:“看,这有60%的可能性是一只狗。”这个过程会一直持续到被输入的图片可以被转化成在神经系统看来完全就是一只狗或者其他事物为止。并且,在这样不断转化被分类的图像的过程中,系统创造了看起来超脱尘世的迷幻图像。

Google的Deep Dream以这样的方式逆转了我们传统认识中,输入一个图形就会生成一个对应输出结果的固定思维。如今,每个输入的图像都会被认知系统不断改进,直到它可以完全的理解并进行最佳分类。

2.让机器模仿人类

通过生成式对抗系统模仿学习的过程

一群AI研究人员希望能够用不同的方式去建构能自学的人工智能,而不是沿用传统的建立在奖励机制上的方法。

他们给了人工智能一套真实的展示数据作为输入指令,而根据这套数据,人工智能就可以学习并且尝试模仿同样的动作。

在这个模型中,Jonathan Ho和Stefano Ermon展示了一种全新的模仿学习的方法。在标准的强化学习系统中,人们总是要设计一个奖励功能来向人工智能描述他们应该做出怎样的行为。然而,在实际操作中,这会需要昂贵的“实验-纠错“的过程来将保证细节的正确。但是,在模仿学习的设定下,人工智能可以直接向样本的展示如何去学习,从而完全消除了去设计一个奖励功能的需要。

3.指马为斑马,变冬为夏

图像到图像的生成

通过已有的图像来生成新的图像是生成系统的一个非常有趣的应用。在试验中,研究者们已经可以改变视频中的动物,或者图片中的季节。

这一任务的目标是学习如何通过一整套图像对(image pair)去充分认识输入与输出的图像的联系与区别。然而,在多数情况中,成对的训练数据并不好找。而解决这一问题的方法就是使用两个完全相对的映像,一方的输出图像被设定成正好是对方的输入图像。以这样的方法,人们得以用非常少量的数据让人工智能认识到两个图像的真实联系(无监督学习)。

4. 将简略素描变成丰满画作

通过轮廓生成图像

逼真的图像处理是一项艰巨的任务,因为它需要人工智能通过一个被用户设定的角度去丰富图像的表现,但同时他也要能够确保最终输出的逼真效果。这着实需要相当高超的技巧。而一个艺术家可能需要数年的持续训练才可以达到这样的程度。

研究此项技术的人工智能研究人员之前一直是如何做的呢?他们创造了一个模型。当人们给这个模型一个物体的轮廓时,他可以成功认出这个物体,然后基于轮廓生成一个逼真的实际图像。

然而,在近期的一篇论文中,一位作者提议使用Generative Adversarial Neural Network(生成式对立神经网络)来使人工智能可以直接通过自然图像背后的数据进行学习。这样的模型自动调节了输出图像的编辑,使其尽可能逼真。同时,这样的处理可在约束优化的条件下实现近乎于实时的执行。这项技术如果可以进一步发展,那我们可以期待,未来,人工智能可以将人们的草稿变成新的图形,又或者是将一幅固定图像改变地与目标图像无限接近。

5. 看字画图

从字到图的自动合成

根据文本自动合成逼真图片的技术令人向往。最近,深度卷积生成式对抗网络已经可以识别某些特定种类的文章然后生成非常引人注目的图片,例如面庞,唱片封面和房间内部装饰。

这个模型被同时包含文本和他们相应图片的样本数据喂养着。当人们提供了任何一个事物的描述时,这个模型就会开始自动生成对应的图像。







请到「今天看啥」查看全文