疑似相与析,好文共欣赏,通过七曜投资微信公众号平台,我们分享高质量的信息,共同成长。
本文已获得转载授权,内容不代表七曜观点。
本文转自微信公众号
橡树资本Oaktree Capital(ID:Oaktree_Capital)
世界上有两类预言家:一类对未来并无所知,而另一类不知道自己并无所知。
最后润色备忘录《敢于另辟蹊径》(I Beg to Differ)后不久,我与一些经验丰富的投资者以及投资圈外的人士一同出席了一次午餐会。这并非一项社交活动,而是为在场的人提供了就投资环境交流彼此观点的机会。
期间,主持人提出了一系列问题:您预期通胀会如何发展?会不会出现经济衰退,如果会,情况有多严重?俄乌冲突将以何种方式结束?2022年和2024年美国大选可能会产生什么影响?对此,我听到了各种各样的观点。
长期追踪我备忘录的读者应该可以想象到我当时的想法:"这个房间里没有人是外交事务或政治方面的专家。在场没有人对这些话题有特别深入的见解,当然也不会比阅读今天早上新闻的普通人知道得更多。"
我所传达的思想,即使是针对经济问题,似乎也没有比其他人更具说服力,而且我绝对相信,没有人能够改善投资结果。这就是关键。
正是那次午餐会让我开始考虑写另一篇关于宏观展望无益的备忘录。不久之后,我发现一些额外的素材——一本书、一篇来自彭博观点(Bloomberg Opinion) 的文章和一篇报纸上的文章——这些素材都支持我的论点(也可能是我的"证实偏差"——即人们倾向于接受和相信能够证明自己先前已有观点的信息和论据)。
那次午餐会和这些素材共同启发了这份备忘录的主题:
预测鲜有益处的诸多原因。
为了获得有用的东西——无论是在制造业、学术界,甚至是艺术领域——必须有一个可靠的
过程
,能够将所需的
输入
转换为期望的
输出
。简言之,问题在于,我认为没有一个过程能够始终如一地将大量与经济和金融市场相关的变量(输入)转化为有用的宏观预测(输出)。
大约在我任职于第一花旗银行(First National City Bank)的头十年,有一个在当时很热门但现在已经很久没听到过的词:计量经济学。具体是指在经济数据中寻找关联从而产生有效预测的一种做法。或者简言之,计量经济学研究如何建立经济的数学模型。在上世纪70年代,计量经济学者们炙手可热,但我觉得他们现已风光不再。我认为这意味着他们的模型不起作用。
无论模型是复杂精密的还是潦草简单的、基于数学的还是出于直觉的,预测者都别无选择只能根据模型做出判断。
模型从定义而言是由假设组成的:"如果A发生,那么B就会发生。"换句话说,模型陈述了关系与响应。但要我们愿意采纳模型的输出结果,就必须让我们相信这个模型是可靠的。可当我想到要为经济建模时,我的第一反应是这会多么的复杂。
例如,美国大约有3.3亿人口。除去特别年幼的和一些特别年老的,其余的人都是经济的参与者。因此,有数以亿计的消费者,以及数以百万计的工人、生产商和中间商(许多人满足多个分类)。要预测经济的发展路径,就必须预测这些人的行为——就算不预测每位参与者,至少也要预测群体总量。
美国经济的真实模拟必须处理数十亿的互动或节点,包括与全球各地的供应商、客户和其他市场参与者的互动。是否有可能做到这一点?例如,是否能预测消费者在下列情况下做出的行为:(一)如果他们获得额外一美元的收入("边际消费倾向"是多少?);(二)如果能源价格上涨,挤压了家庭预算中的其他类别;(三)如果一种商品的价格相对于其他商品上涨(是否会产生"替代效应"?);以及(四)如果地缘政治舞台被其他大洲的事件搅动?
显然,这种复杂程度需要频繁使用经简化的假设。考虑到所涉及的大量变量,两个"相似"时刻似乎不可能以完全相同的方式发生,而我们也不太可能看到经济参与者表现出相同的行为。除此之外,参与者的行为将受到他们的心理(或者我应该说他们的情绪?)的影响,而且他们的心理可能会受到定性的、非经济发展的影响。这些如何建模?
一个经济模型如何能全面到足以处理以前从未遇到过的情况,或者在现代(即在可比情况下)未曾出现过的情况?这是又一个例证,说明模型无法简单复制像经济这样复杂的事物。
当然,其中一个典型例子就是新冠疫情。它导致全球大部分经济体停摆,颠覆了消费者行为,并激发了政府大规模的发钱纾困政策。已有模型的哪个方面能够预测疫情影响?是的,世界曾在1918年经历过一场疫情,但情况截然不同(当时没有iPhone、Zoom通话等等),以至于那个时期与2020年几乎没有任何可比性。
除了复杂程度和难以捕捉的心理波动和动态过程等因素外,还要考虑到试图对不能预期保持不变的事物进行预测本身就具有局限性。
在《周期》 (Mastering the Market Cycle) 一书中,我列出了投资者应该从词汇表中清除的七个术语:"从不"、"总是"、"永远"、"不能"、"不会"、"将" 和 "必须"。但如果这些词真的必须被摒弃,那么也必须摒弃能建立可靠地预测宏观未来的模型的想法。换言之,在我们的领域里,几乎没有什么是不可变的。
行为的不可预测性是我最喜欢的话题。著名物理学家理查德·费曼 (Richard Feynman) 曾经说过:"想象一下,如果电子有感觉,物理学将会多难。"物理规则是可靠的,正是因为电子总是做它们应该做的事情。它们永远不会忘记履行自己的职责。它们从不反抗。它们从不罢工。它们从不创新。它们从不以相反的方式行事。
但这些都不适用于经济中的参与者,正是因为不适用才导致参与者的行为是不可预测的。如果参与者的行为是不可预测的,那么如何对经济的运行进行建模?
我们在谈论未来,没有任何一种方法可在不需要做出假设的情况下预测未来。
有关经济环境假设的小错误和参与者行为的细微变化都可能造成严重问题。
综上所述,我们能否认为经济模型是可靠的?模型可否复制现实?它能否描述数以百万计的参与者行为及他们之间的互动?试图建模的过程是否可靠?这些过程可否简化为数学?数学能否捕捉人及其行为的定性细微差别?模型能否预测消费者偏好的变化、企业行为的变化以及参与者对创新的反应?换言之,我们能否相信模型的输出结果?
显然,经济关系并非一成不变,经济也不受示意图(模型试图模拟的示意图)所支配。因此,对我来说,底线是,在不违反假设的情况下,模型的输出结果大部分时间指向正确方向。但它不可能总是准确的,尤其是在拐点等关键时刻……而这正是准确预测最有价值的时候。
无法忽略的一个事实是,你所有的知识都是关于过去的,你所有的决定都是关乎未来的。
在考虑了经济不可思议的复杂性,以及需要做出经过简化的假设(这将降低任何经济模型的准确性),现在让我们来考虑一个模型所需的输入——制造预测的原材料。预估的输入是否有效?我们能否对它们有足够深入的了解,从而得出有意义的预测?
还是让我们简单地想起关于模型的终极真理:"输入垃圾,输出的还是垃圾"?
显然,没有任何预测的质量会比它所基于的输入的质量更好。
以下是历史学家尼尔·弗格森 (Niall Ferguson)7月17日在彭博观点 (Bloomberg Opinion) 撰写的内容:
考虑一下当我们提出"通胀是否已见顶?"这个问题时真正想问的。我们在问的不仅仅是94000种不同商品、制成品和服务的供需情况。我们还在关心美联储设定的未来利率路径,撇开备受吹捧的"前瞻性指引"不谈,其去向何方仍远未明确。我们在问的是美元强势还会持续多久,因为它目前正在压低美国进口商品的价格。
但还有更多的问题有待解答。与此同时,以上问题也在间接地询问,俄乌冲突还会持续多久,因为自2月份以来,俄乌冲突造成的混乱已经显著加剧了能源和食品价格的通胀。我们是在问沙特阿拉伯等产油国是否会回应西方政府增加原油产量的请求......
我们可能还应该问问自己,最新的新冠病毒奥密克戎BA.5将对西方劳动力市场产生什么影响。英国数据表明,BA.5的传染性比其前身BA.2高35%,而BA.2的传染性又比原始奥密克戎高20%以上。
如果要将所有这些变量添加到你的模型中,那我祝你好运。事实上,通胀的未来路径,如同俄乌冲突的未来走向和新冠疫情的传播路径一样,都无法确定。
弗格森的文章提出了一个关于经济建模的有趣问题:关于经济参与者身处何种宏观环境,我们应该作出什么假设?
这个问题恰好展示了一个死循环:为了预测经济的整体表现,我们需要对消费者行为等方面做出假设。但要预测消费者行为,难道我们不需要对整体经济环境做出假设吗?
在我首份关于疫情的备忘录《无人知晓(二)》(Nobody Knows II)(2020年3月)中,我提到在讨论冠状病毒时,哈佛流行病学家马克·利普希奇 (Marc Lipsitch) 曾说过:(一)事实;(二)类比其他病毒所得出的有根据的推论,以及(三)观点或推测。这是我们处理不确定事件时的标准做法。在经济或市场预测中,我们有大量的历史和许多类似的过去事件可以推断(但新冠疫情都没有)。
但即使这些东西被一个构造良好的预测模型用作输入,它们仍不太可能预测未来。它们可能是有用的素材,也可能是垃圾。
为了说明这一点,人们经常问我过去所经历的哪个周期与当前最相似。我的回答是,当前的发展与过去的一些周期有短暂的相似之处,但没有绝对的相似之处。
在每种情况下,差异都是巨大的,并且超过了相似之处。即使我们可以找到一个相同的前一时期,我们应该在多大程度上依赖于这个单一样本?我想答案是不多。投资者依赖历史参考资料(以及他们据此提出的预测),因为他们担心如果没有这些参考资料,他们会盲目行事。但这并不意味着这些资料是可靠的。
如果不首先确定我们的世界是有序的还是随机的,我们就无法考虑预测的合理性。
简言之,它是完全可预测的、完全不可预测的,还是介于两者之间?对我来说,结论是介于两者之间,但更倾向于无法预测,以至于大多数预测都无济于事。既然我们的世界在某些时候是可以预测的,而在另一些时候是不可预测的,那么如果我们不能区分什么时候是可预测的,什么时候是不可预测的,预测又有什么用呢?
我从阅读弗格森的文章中学到了一个新词:"确定性的 (deterministic)"。牛津词典将其定义为"由先前的事件或自然规律因果决定的"。当我们按照规则处理事情时,世界就简单多了……就像费曼的电子一样。但很明显,经济和市场不受自然规律支配——这要归功于人类的参与——之前的事件可能是"铺垫"或"倾向于重复",但事件很少会以同样的方式发生两次。因此,我认为构成经济和市场运行的过程不是确定性的,这意味着它们是不可预测的。
此外,输入显然是不可靠的。很多都是随机的,例如天气、地震、事故和死亡。其他的则涉及政治和地缘政治问题——一些我们已知,一些还没有浮出水面。
回到第一页所介绍的午餐会,主持人的开场白大致如下:"近年来,我们经历了新冠疫情、取得惊人成功的美联储救市政策以及俄乌冲突等事件。这是一个非常富有挑战性的环境,因为所有这些都突如其来。"我想,对他来说,这意味着与会者应该让自己摆脱对2020年-2022年预测不准确的困扰,继续预测未来,并押注于自己的判断。但我的反应完全不同:"影响当前环境的事件有很多。
而没有人能够预测其中任何一件,这一事实难道不足以让在场的人相信他们应该放弃预测吗?"
再举一个例子,让我们回想一下2016年的秋天。有两件事几乎每个人都深信不疑:(一)希拉里·克林顿将当选总统;(二)若出于某种原因唐纳德·特朗普当选,市场将会崩溃。尽管如此,结果是特朗普赢了,市场飙升。过去六年对经济和市场影响深远,
我相信,当时任何对2016年大选持传统观点的预测都不会是正确的。
这难道还不足以让人们相信:(一)我们不知道未来会发生什么,(二)我们无法了解市场将如何对所发生的事情做出反应?
让我们陷入困境的不是无知,而是看似正确的谬误论断。
正如我在最近的备忘录《关于宏观问题的思考》(Thinking About Macro) 中提到的,在1970年代,我们曾经将经济学家描述为"从不入市的投资总监。"换言之,经济学家做出众多预测;实际情况会证明他们是对还是错;然后他们继续做新的预测;但他们并不对预测正确的频率进行追踪(或者,他们并没有发布统计数据)。
令人难以想象的是,全球有关宏观预测是否会带来超额收益的信息十分匮乏,尤其是与需要这类信息的人数相比极不相称。
尽管缺乏证明其价值的证据,但宏观预测却仍在继续。许多预测者是股票基金管理团队中的一员,或者在为这些团队提供建议和预测。我们可以肯定的一点是,由于主动管理的业绩不佳,主动管理型股票基金几十年来一直在失去市场份额,被指数型基金和其他被动投资型工具所取代,主动管理型基金现在在美国股票共同基金市场中所占份额少于一半。宏观预测在本质上对投资并无帮助,是否是其中的原因?
据我所知,有关这个问题,唯一可以找到量化信息的是所谓的宏观对冲基金的表现。对冲基金研究组织 (HFR) 发布了对冲基金加权综合指数以及一些子策略指数。以下是对冲基金加权综合指数、宏观对冲子策略指数和标普500指数的长期表现。
上表中,根据HFR的数据,在研究期间,对冲基金的平均表现远低于标准普尔500指数,而宏观对冲子策略基金的平均表现更是差得多(尤其是在2012年至2017年期间)。鉴于投资者继续将大约4.5万亿美元的资金委托给对冲基金管理人,这些基金必须提供回报以外的一些利益,但目前尚不清楚这会是什么。对于宏观对冲基金来说,似乎尤其如此。
为了证实我对于预测的看法,接下来我要举一个很少见的有关自我评估的例子:7月24日《纽约时报》"周日观点"专栏刊出一篇长达七页的专题文章,题为"我错了"。文章中,八位《纽约时报》"观点"专栏作者公开了他们曾做过的错误预测以及给出的有失偏颇的建议。这里最相关的是保罗·克鲁格曼 (Paul Krugman) 所写的一篇题为" 我看错了通胀 (I Was Wrong About Inflation)"的自白书。我把其中的一些内容摘录并串连起来:
2021年初,经济学家们就"美国救助计划"的可能后果展开了激烈的辩论……我当时站在“支持不太担忧通胀影响的一边” 。当然,事实证明,这是一个非常糟糕的决定……
……历史无法让我们预料到会有如此过热的通胀。所以
我的模型出了问题……
一种可能的原因是
历史具有误导性……
此外,为适应疫情及其后果而产生的扰动可能仍在发挥很大作用。
无论如何,整件事都成了一场
谦逊的教训
。令人难以置信的是,在2008年金融危机之后,标准经济模型一直运作得相当好,我当时认为在2021年运用同样的模型没有问题。现在回想起来,我当时就该意识到在新冠疫情后所呈现的新世界趋势中,这种
推断本身就存在风险。
(粗体为笔者所加)
我很钦佩克鲁格曼能表现出如此惊人的坦率(虽然我不得不说,我并不记得在2009年到2010年间有很多市场预测乐观到足以描绘随后十年实际情况的程度)。
克鲁格曼对他的错误的解释就其本身而言是很好的,但我并未看到他提及在未来放弃建模、推断或预测。