在这篇Science论文中,利用Div-Seq(which combines scalable single-nucleus RNA-Seq (sNuc-Seq) with pulse labeling of proliferating cells by EdU)技术,科学家们对增殖的单个细胞进行研究。结果发现,sNuc-Seq和Div-Seq不仅能够敏感地鉴定出密切相关的海马细胞类型,还能够追踪新生神经元的转录动力学。研究人员还利用Div-Seq鉴定和描述了成人脊髓中罕见的新生GABAergic神经元。论文结论称,sNuc-Seq和 Div-Seq为多种多样复杂组织的无偏差分析开辟了道路。
过去,科学家们一直在努力在单细胞水平研究来自复杂组织(如大脑)的神经元和其它细胞的基因表达。然而,将细胞分离出来的这个程序影响了细胞的RNA含量。此外,这些过程也不适用于冷冻保存的组织。sNuc-Seq技术通过利用从细胞中提取出的单个细胞核作为起始点(by using individual nuclei extracted from cells as a starting point),成功绕过了这些问题。
事实上,DroNc-Seq的开发灵感来自一个称为Drop-Seq的单细胞RNA测序技术。该技术将单个细胞与DNA条形码串珠封装在微滴中(encapsulates single cells together with DNA barcoded-beads in microdroplets),极大地促进了表达分析,并降低了成本。相关成果于2015年5月以“Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets”为题发表在Cell杂志上。
Credit : Susanna M. Hamilton, Broad Communications
Single-nucleus RNA sequencing (sNuc-seq) profiles RNA from tissues that are preserved or cannot be dissociated, but it does not provide high throughput. Here, we develop DroNc-seq: massively parallel sNuc-seq with droplet technology. We profile 39,111 nuclei from mouse and human archived brain samples to demonstrate sensitive, efficient, and unbiased classification of cell types, paving the way for systematic charting of cell atlases.