专栏名称: AI科技大本营
迎来到AI科技大本营。这里汇集了优秀的AI学习者,技术大咖和产业领袖;提供接地气的实战课程。在这里和优秀的人一起成长。
目录
相关文章推荐
爱可可-爱生活  ·  【[165星]wild-card-ai/ag ... ·  2 天前  
新智元  ·  Grok ... ·  2 天前  
爱可可-爱生活  ·  【[141星]LangMem:让AI ... ·  2 天前  
爱可可-爱生活  ·  【[254星]openai-realtime ... ·  2 天前  
机器之心  ·  人刚毕业,代码一点不会,他纯靠ChatGPT ... ·  2 天前  
51好读  ›  专栏  ›  AI科技大本营

触类旁通,经典面试题最长公共子序列应该这么答

AI科技大本营  · 公众号  · AI  · 2019-08-28 19:51

正文


作者 | labuladong

来源 | labuladong (ID: labuladong )


【导读】最长公共子序列(Longest Common Subsequence,简称 LCS)是一道非常经典的面试题目,因为它的解法是典型的二维动态规划,大部分比较困难的字符串问题都和这个问题一个套路,比如说编辑距离。而且,这个算法稍加改造就可以用于解决其他问题,所以说 LCS 算法是值得掌握的。

题目就是让我们求两个字符串的 LCS 长度:
输入: str1 = "abcde", str2 = "ace" 输出: 3  解释: 最长公共子序列是 "ace",它的长度是 3

肯定有读者会问,为啥这个问题就是动态规划来解决呢?因为子序列类型的问题,穷举出所有可能的结果都不容易,而动态规划算法做的就是穷举 + 剪枝,它俩天生一对儿。所以可以说只要涉及子序列问题,十有八九都需要动态规划来解决,往这方面考虑就对了。

下面就来手把手分析一下,这道题目如何用动态规划技巧解决。

一、动态规划思路


第一步,一定要明确 dp 数组的含义。 对于两个字符串的动态规划问题,套路是通用的。

比如说对于字符串 s1 和 s2,一般来说都要构造一个这样的 DP table:


为了方便理解此表,我们暂时认为索引是从 1 开始的,待会的代码中只要稍作调整即可。其中,dp[i][j] 的含义是:对于 s1[1..i] 和 s2[1..j],它们的 LCS 长度是 dp[i][j]。

比如上图的例子,d[2][4] 的含义就是:对于 "ac" 和 "babc" ,它们的 LCS 长度是 2。我们最终想得到的答案应该是dp[3][6]。

第二步,定义 base case。

我们专门让索引为 0 的行和列表示空串,dp[0][..]和dp[..][0]都应该初始化为 0,这就是 base case。

比如说,按照刚才 dp 数组的定义,dp[0][3]=0的含义是:对于字符串""和"bab",其 LCS 的长度为 0。因为有一个字符串是空串,它们的最长公共子序列的长度显然应该是 0。

第三步,找状态转移方程。

这是动态规划最难的一步,不过好在这种字符串问题的套路都差不多,权且借这道题来聊聊处理这类问题的思路。

状态转移说简单些就是做选择,比如说这个问题,是求 s1 和 s2 的最长公共子序列,不妨称这个子序列为 lcs。那么对于 s1 和 s2 中的每个字符,有什么选择?很简单,两种选择,要么在 lcs 中,要么不在。


这个「在」和「不在」就是选择,关键是,应该如何选择呢?这个需要动点脑筋:如果某个字符应该在lcs中,那么这个字符肯定同时存在于s1和s2中,因为lcs是最长公共子序列嘛。所以本题的思路是这样:

用两个指针 i 和 j 从后往前遍历 s1 和 s2 ,如果 s1[i]==s2[j],那么这个字符一定在 lcs 中;否则的话,s1[i] 和 s2[j] 这两个字符至少有一个不在 lcs 中,需要丢弃一个。先看一下递归解法,比较容易理解:


对于第一种情况,找到一个 lcs 中的字符,同时将 i, j 向前移动一位,并给 lcs的长度加一;对于后者,则尝试两种情况,取更大的结果。

其实这段代码就是暴力解法,我们可以通过备忘录或者 DP table 来优化时间复杂度,比如通过前文描述的 DP table 来解决:


二、疑难解答


对于 s1[i] 和 s2[j] 不相等的情况,至少有一个字符不在 lcs 中,会不会两个字符都不在呢?比如下面这种情况:


所以代码是不是应该考虑这种情况,改成这样:
if str1[i - 1] == str2[j - 1]:    # ...else:    dp[i][j] = max(dp[i-1][j],                    dp[i][j-1],                   dp[i-1][j-1])

我一开始也有这种怀疑,其实可以这样改,也能得到正确答案,但是多此一举,因为 dp[i-1][j-1] 永远是三者中最小的,max 根本不可能取到它。
原因在于我们对 dp 数组的定义:对于 s1[1..i]和s2[1..j],它们的 LCS 长度是dp[i][j]。

这样一看,显然dp[i-1][j-1]对应的lcs长度不可能比前两种情况大,所以没有必要参与比较。

三、总结


对于两个字符串的动态规划问题,一般来说都是像本文一样定义 DP table,因为这样定义有一个好处,就是容易写出状态转移方程,dp[i][j] 的状态可以通过之前的状态推导出来:

找状态转移方程的方法是,思考每个状态有哪些「选择」,只要我们能用正确的逻辑做出正确的选择,算法就能够正确运行。

原文链接:
https://mp.weixin.qq.com/s/myJbSMpOkh2zCPoY4q3duw

(*本文为 AI 科技大本营转载文章,转载请联系原作者)


福利时刻



入群参与每周抽奖~


扫码添加小助手,回复:大会,加入福利群,参与抽奖送礼!


AI ProCon 大会 优惠票限时抢购中! 识别海报二维码,即刻购票~







请到「今天看啥」查看全文