专栏名称: 机器学习研究会
机器学习研究会是北京大学大数据与机器学习创新中心旗下的学生组织,旨在构建一个机器学习从事者交流的平台。除了及时分享领域资讯外,协会还会举办各种业界巨头/学术神牛讲座、学术大牛沙龙分享会、real data 创新竞赛等活动。
目录
相关文章推荐
爱可可-爱生活  ·  【AI旅行助手:智能旅行助理,能帮你查找航班 ... ·  3 天前  
中国人工智能学会  ·  聚智促产 ... ·  6 天前  
51好读  ›  专栏  ›  机器学习研究会

【论文】(论文+代码)无监督的跨域图像生成

机器学习研究会  · 公众号  · AI  · 2017-01-23 20:11

正文



点击上方“机器学习研究会”可以订阅哦
摘要
 

转自:视觉机器人

论文《Unsupervised Cross-Domain Image Generation》摘要:

We study the problem of transferring a sample in one domain to an analog sample in another domain. Given two related domains, S and T, we would like to learn a generative function G that maps an input sample from S to the domain T, such that the output of a given function f, which accepts inputs in either domains, would remain unchanged. Other than the function f, the training data is unsupervised and consist of a set of samples from each domain. The Domain Transfer Network (DTN) we present employs a compound loss function that includes a multiclass GAN loss, an f-constancy component, and a regularizing component that encourages G to map samples from T to themselves. We apply our method to visual domains including digits and face images and demonstrate its ability to generate convincing novel images of previously unseen entities, while preserving their identity.


论文链接:

https://arxiv.org/abs/1611.02200


代码链接:

https://github.com/yunjey/dtn-tensorflow


原文链接:

http://weibo.com/5501429448/Es9L6oxfG?ref=collection&type=comment#_rnd1485161563006

“完整内容”请点击【阅读原文】
↓↓↓