Caffe
究竟Caffe是什么呢?
Caffe是由Berkeley Vision and Learning Center(BVLC)建立的深度学习框架。它是模块化的,速度极快。而且被应用于学术界和产业界的start-of-the-art应用程序中。
优点:
缺点:
--from:https://www.zhihu.com/question/27982282/answer/39350629
你可以在一个空白文档里定义你的模型架构和解决方案,建立一个JSON文件类型的.prototxt配置文件。Caffe二进制文件提取这些.prototxt文件并培训你的网络。Caffe完成培训之后,你可以把你的网络和经过分类的新图像通过Caffe二进制文件,更好的就直接通过Python或MATLAB的API。
Caffe github上的Wiki Development · BVLC/caffe Wiki · GitHub
已经有了教程了,而且这是最接近latest Caffe的源码结构的教程,你在网上搜到的Blog很多是有点过时的,因为Caffe最近又重构了代码。你可以跟着它的指导去添加自己的层。
代码GitHub网址:
GitHub - BUPTLdy/Caffe_Code_Analysis: Caffe_Code_Analysis
--from:https://www.zhihu.com/question/27982282/answer/80242005
Theano
Theano 在深度学习框架中是祖师级的存在。它的开发始于 2007,早期开发者包括传奇人物 Yoshua Bengio 和 Ian Goodfellow。
Theano是一个Python库,是一个擅长处理多维数组的库(这方面它类似于 NumPy)。 Theano通过与numpy的紧密集成,透明地使用GPU来完成这些工作。
但随着这些年的发展,大量基于 Theano 的开源深度学习库被开发出来,包括 Keras, Lasagne 和 Blocks。这些更高层级的 wrapper API,能大幅减少开发时间以及过程中的麻烦。顺便说一句,Theano 是一整套生态系统,别只用它裸奔,然后抱怨不好用。
优点:
Python + NumPy 的组合
使用计算图
RNN 与计算图兼容良好
有 Keras 和 Lasagne 这样高层的库
不少开发者反映,它的学习门槛比Tensorflow 低
缺点:
本身很底层
比 Torch 臃肿
不支持分布式
有的错误信息没什么用
大模型的编译时间有时要很久
对事先训练过的模型支持不足
用的人越来越少
TensorFlow
TensorFlow™ 是一个采用数据流图(data flow graphs),用于数值计算的开源软件库。节点(Nodes)在图中表示数学操作,图中的线(edges)则表示在节点间相互联系的多维数据数组,即张量(tensor)。它灵活的架构让你可以在多种平台上展开计算,例如台式计算机中的一个或多个CPU(或GPU),服务器,移动设备等等。TensorFlow 最初由Google大脑小组(隶属于Google机器智能研究机构)的研究员和工程师们开发出来,用于机器学习和深度神经网络方面的研究,但这个系统的通用性使其也可广泛用于其他计算领域。
--from:TensorFlow中文社区
推荐学习资源:
可以学一下斯坦福新开的课程,cs20si,
http://
web.stanford.edu/class/
cs20si/index.html
国内可以看b站的视频,CS 20SI: Tensorflow for Deep Learning Research
通过这个课程,能够对tensorflow有个全面的了解,从最基本的计算图开始,到如何结构化模型,了解最新的seq2seq,neural style等前沿算法的实现。
Lasagne
Lasagen是一个基于Theano的轻量级的神经网络库。其实就是对Theano库的上层封装,使其用起来更简单,但是相应的灵活性下降。这里的关键词是轻量级的,也就意味着它不是一个像Keras一样围绕着Theano的重包装的库。虽然这会导致你的代码更加繁琐,但它会把你从各种限制中解脱出来,同时还可以让您根据Theano进行模块化的构建。
Lasagne设计的六个原则是简洁、透明、模块化、实用、聚焦和专注。
官网地址:http://lasagne.readthedocs.io/en/latest/index.html
GitHub: https://github.com/Lasagne/Lasagne
Keras
Keras是一个最低限度的、模块化的神经网络库,可以使用Theano或TensorFlow作为后端。Keras最主要的用户体验是,从构思到产生结果将会是一个非常迅速的过程。
在Keras中架构网络设计是十分轻松自然的。它包括一些state-of-the-art中针对优化(Adam,RMSProp)、标准化(BatchNorm)和激活层(PReLU,ELU,LeakyReLU)最新的算法。