1. Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature (2024) doi:10.1038/s41586-024-07487-w.
2. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
3. Bryant, P., Pozzati, G. & Elofsson, A. Improved prediction of protein-protein interactions using AlphaFold2. Nat. Commun. 13, 1265 (2022).
4. Evans, R. et al. Protein complex prediction with AlphaFold-Multimer. Preprint at https://doi.org/10.1101/2021.10.04.463034 (2021).
5. Buttenschoen, M., Morris, G. M. & Deane, C. M. PoseBusters: AI-based docking methods fail to generate physically valid poses or generalise to novel sequences. (2023) doi:10.48550/ARXIV.2308.05777.
6. Trott, O. & Olson, A. J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461 (2010).
7. Krishna, R. et al. Generalized Biomolecular Modeling and Design with RoseTTAFold All-Atom. http://biorxiv.org/lookup/doi/10.1101/2023.10.09.561603 (2023) doi:10.1101/2023.10.09.561603.
8. Baek, M. et al. Accurate prediction of protein–nucleic acid complexes using RoseTTAFoldNA. Nat. Methods 21, 117–121 (2024).
9. Shen, T. et al. E2Efold-3D: End-to-End Deep Learning Method for accurate de novo RNA 3D Structure Prediction. (2022) doi:10.48550/ARXIV.2207.01586.
10. Chen, K., Zhou, Y., Wang, S. & Xiong, P. RNA tertiary structure modeling with BRiQ potential in CASP15. Proteins Struct. Funct. Bioinforma. 91, 1771–1778 (2023).