上周的小项目作业是“爬取 Expatistan 网站上的各国生活成本数据并绘制一幅世界地图进行展示”。
1.
数据源:
Expatistan
[1]
。
2.
世界地图的底图数据:
tmap
[2]
包内有一个 World 数据,调用方法:
data("World", package = "tmap")
1.
爬取数据的 R 包,可以用
rvest
[3]
;
Tips: 可能需要到的函数:read_html,html_nodes,html_table;
1.
绘制地图的 R 包,ggplot + sf (本周有教程),用 tmap 也行。
2.
拓展作业:可以再绘制一些其他的图来展示各国生活成本的排名。
参考结果
爬取数据
这种表格数据用 rvest 包爬取非常容易:
library(tidyverse)
library(hrbrthemes)
library(rvest)
# 把网址保存成一个名为 url 的变量:
url
# 使用 read_html() 函数读取解析网页文件,保存为名为 html 的变量:
html
解析得到的 html 是个
xml_document
,这是一种结构性的数据,我们可以使用
html_nodes()
函数从中找寻某个节点,通常找寻的办法有两个:CSS 和 XPath,都可以用,首先我们用 xpath:
html %>%
html_nodes(xpath = '//*[@id="content"]/div/div[1]/div[1]/table')
## {xml_nodeset (1)}
## [1] \n\n\n ...table 标签对应的就是我们想要爬取数据的这个表格。那么这个 xpath 从哪来的呢?
![](http://mmbiz.qpic.cn/mmbiz_png/gz1Pts4PpxSu2NBcVpalItUlDFkFLBNN68ic4boRq1n117WCmuPRoTibh97vz4pfwLCtXv09Ub9wlpnZkChF7EibQ/640?wx_fmt=png)
或者我们可以用 CSS 选择:
html %>%
html_nodes(css = '#content > div > div.block.first.comparison > div.prices > table')
## {xml_nodeset (1)}
## [1]
\n
\n
\n ...CSS 选择器是这么来的
![](http://mmbiz.qpic.cn/mmbiz_png/gz1Pts4PpxSu2NBcVpalItUlDFkFLBNNbVeLOjyKvMia3EI42jlLVCwf5iagwovcColP9gYXLXPxDR35RJ7wJ49g/640?wx_fmt=png)
两种方式的效果是一样的,至于选择哪种就看你的偏好了。
得到了 table 所在的节点之后呢,我们可以使用 html_table()
函数解析表格,解析之后再转化为 tibble 数据框并赋值给 df 变量:
html %>%
html_nodes(xpath = '//*[@id="content"]/div/div[1]/div[1]/table') %>%
html_table() %>%
.[[1]] %>%
as_tibble() -> df
完整的表格是这样的:
![](http://mmbiz.qpic.cn/mmbiz_png/gz1Pts4PpxSu2NBcVpalItUlDFkFLBNN8xic2JmvfVy5xaTqV7MgOvSGXCD1zlExFPWagmic9ZNShia508e8icTd4g/640?wx_fmt=png)
我们再把这个数据整理一下,例如 Ranking
变量可以转换成数值型变量, Price Index *
的名字也改改:
library(stringr)
df %
`colnames%
mutate(ranking = str_remove_all(ranking, "[st nd rd th]")) %>%
type_convert()
df
## # A tibble: 99 x 3
## ranking country price_index
##
## 1 1 Cayman Islands 286
## 2 2 Hong Kong 234
## 3 3 Iceland 230
## 4 4 Switzerland 227
## 5 5 Bahamas 216
## 6 6 Norway 214
## 7 7 Singapore 201
## 8 8 Ireland 200
## 9 9 Denmark 198
## 10 10 Qatar 192
## # … with 89 more rows
先画个简单的柱状图吧!
# 关于字体和主题的设置,请参考:https://czxa.top/tf/get-started-with-r-and-rstudio.html
enfont = "CascadiaCode-Regular"
library(forcats)
df %>%
slice(1:10) %>%
mutate(
country = fct_reorder(country, price_index)
) %>%
ggplot() +
geom_col(aes(x = country,
y = price_index,
fill = country)) +
awtools::a_dark_theme(enfont) +
theme(legend.position = "none") +
scale_fill_brewer(palette = "Paired") +
coord_flip() +
labs(y = "Price Index",
x = "",
title = "Cost of Living Ranking: Top 10",
subtitle = "Czech Republic = 100",
caption = "Data Source: Expatistan\nhttps://www.expatistan.com/cost-of-living/country/ranking") +
theme(plot.margin = grid::unit(c(1, 0.5, 0.5, 0.2), "cm"))
![](http://mmbiz.qpic.cn/mmbiz_png/gz1Pts4PpxSu2NBcVpalItUlDFkFLBNNaMdYwmVlBbrOFh5uiaBAqBibMMMu7iaOLc13ITy79ELgTIVEq7vrLEiaog/640?wx_fmt=png)
这是个世界地图的数据,最好的可视化当然是画世界地图了!
我们使用 ggplot2 + sf 绘制世界地图,底图使用 tmap 包中的 World,安装 tmap 包出错的小伙伴,可以从 TidyFriday 的 知识星球下载 “World.rds” 数据:
library(ggplot2)
library(sf)
data("World", package = "tmap")
wdf %
mutate(name = as.character(name)) %>%
left_join(df, by = c("name" = "country")) %>%
rename(`Price Index` = `price_index`)
ggplot(wdf) +
geom_sf(aes(geometry = geometry,
fill = `Price Index`),
color = "white", size = 0.05) +
theme_modern_rc(base_family = enfont,
plot_title_family = enfont,
subtitle_family = enfont,
caption_family = enfont) +
scale_fill_viridis_c() +
theme(plot.margin = grid::unit(c(1, 0.2, 0.3, 0.2), "cm")) +
labs(y = "",
x = "",
title = "Cost of Living Ranking by Country",
subtitle = "Czech Republic = 100",
caption = "Data Source: Expatistan\nhttps://www.expatistan.com/cost-of-living/country/ranking")
![](http://mmbiz.qpic.cn/mmbiz_png/gz1Pts4PpxSu2NBcVpalItUlDFkFLBNNCwMia3bYIsL50weejQA6HtHPeS1HPGlcPMEzpgB1OAzOEribfxWg0icMw/640?wx_fmt=png)
离散变量
价格指数是个连续变量,但是我们可以把它切割成分组的离散变量:
# 使用分位数进行切割,例如我们想分成 6 组
nclass = 6
# 计算分位数
quantiles %
pull(`Price Index`) %>%
quantile(probs = seq(0, 1,
length.out = nclass + 1),
na.rm = TRUE) %>%
as.vector()
labels
return(paste0(quantiles[idx], " – ",
quantiles[idx + 1]))
})
# 删除最后一个标签,要不然我们就会看到像 "62 - NA" 这样的标签:
labels
labels
## [1] "62 – 78.5" "78.5 – 89" "89 – 105" "105 – 127" "127 – 170.5"
## [6] "170.5 – 230"
wdf
wdf %>%
mutate(
`Price Index` = cut(`Price Index`,
breaks = quantiles,
labels = labels,
include.lowest = TRUE)
)
unique(wdf$`Price Index`)
## [1] 78.5 – 89 170.5 – 230 62 – 78.5 127 – 170.5 105 – 127
## [7] 89 – 105
## Levels: 62 – 78.5 78.5 – 89 89 – 105 105 – 127 127 – 170.5 170.5 – 230
绘制地图:
ggplot(wdf) +
geom_sf(aes(geometry = geometry,
fill = `Price Index`),
color = "white", size = 0.05) +
theme_modern_rc(base_family = enfont,
plot_title_family = enfont,
subtitle_family = enfont,
caption_family = enfont) +
scale_fill_manual(values = ggrapid::select_palette()) +
theme(plot.margin = grid::unit(c(1, 0.2, 0.3, 0.2), "cm")) +
labs(y = "",
x = "",
title = "Cost of Living Ranking by Country",
subtitle = "Czech Republic = 100",
caption = "Data Source: Expatistan\nhttps://www.expatistan.com/cost-of-living/country/ranking")
![](http://mmbiz.qpic.cn/mmbiz_png/gz1Pts4PpxSu2NBcVpalItUlDFkFLBNNEAPHSwAQ4rq7FxrKibe7oBupTY49LoEibDzic9ZMEqiaViaVWVlt4kEy6lQ/640?wx_fmt=png)
使用 tmap 包绘制地图
wdf2 %
mutate(name = as.character(name)) %>%
left_join(df, by = c("name" = "country")) %>%
rename(`Price Index` = `price_index`)
tmap::tmap_style("classic")
tmap::tm_shape(wdf2) +
tmap::tm_polygons("Price Index")
![](http://mmbiz.qpic.cn/mmbiz_png/gz1Pts4PpxSu2NBcVpalItUlDFkFLBNNACx0gCesvmfZUeme3cAoCY7ZJsmfAwWXBKEObiaBibre4qPwwxUlEXrA/640?wx_fmt=png)
使用 highcharter 包绘制世界地图
似乎由于国家和地区的名字差异的问题,合并的有些问题,尽管我使用了 fuzzyjoin 包进行模糊连接:
library(highcharter)
world
worlddf
worlddf %
fuzzyjoin::stringdist_left_join(df, by = c("name" = "country")) %>%
select(code = `hc-a2`, price_index)
hcmap("custom/world-robinson-highres",
data = worlddf, value = "price_index",
joinBy = c("hc-a2", "code"),
name = "Price Index",
dataLabels = list(
enabled = T,
format = '{point.name}'
),
borderColor = "#FAFAFA",
borderWidth = 0.1,
tooltip = list(
valueDecimal = 2
)) %>%
hc_title(text = "Cost of Living Ranking by Country") %>%
hc_subtitle(text = 'Data Source: Expatistan', useHTML = TRUE) %>%
hc_add_theme(hc_theme_chalk())
![](http://mmbiz.qpic.cn/mmbiz_png/gz1Pts4PpxSu2NBcVpalItUlDFkFLBNNHwKxkfyWrUnqMjrhSUEVAjXpH5Yic7oVestQzqw6lIR4k7cnqS5gAMg/640?wx_fmt=png)
我再试试用 Stata 完成这些图表的绘制。。。
爬取城市生活成本指数的排名
这个表在这里:https://www.expatistan.com/cost-of-living/index
爬取方法类似:
"https://www.expatistan.com/cost-of-living/index" %>%
read_html() %>%
html_nodes(xpath = '//*[@id="ranking"]/div[1]/table') %>%
html_table() %>%
.[[1]] %>%
`colnames%
as_tibble() %>%
DT::datatable()
![](http://mmbiz.qpic.cn/mmbiz_png/gz1Pts4PpxSu2NBcVpalItUlDFkFLBNNSo1RtvVqNtrX5lEydg3shAqgCVicq4BwnHkIFCDrh0149ml6eAcIGibg/640?wx_fmt=png)
编写 Shiny 文档
Shiny 文档和 R Markdown 文档不同的地方在于,它是实时运行的,我做了个 Shiny 文档:https://czxa.top/shiny/cost/ ,实时运行意味着每次你打开它的时候里面的代码就会自动运行一遍,所以这个文档上的表格和图表和原始网站上的始终是一致的。
References
[1]
Expatistan: https://www.expatistan.com/cost-of-living/country/ranking
[2]
tmap: https://cran.r-project.org/web/packages/tmap/
[3]
rvest: https://cran.r-project.org/web/packages/rvest/
如需联系EasyCharts团队
请加微信:EasyCharts
增强版配套源代码下载地址
Github
https://github.com/EasyChart/Beautiful-Visualization-with-R
微信扫一扫
关注该公众号
![]()
微信扫一扫
使用小程序
';
mydiv.className = "img_loading";
mydiv.src="";
videoPlaceHolderSpan.style.cssText = "width: " + obj.w + "px !important;";
mydiv.style.cssText += ";width: " + obj.w + "px";
videoPlaceHolderSpan.appendChild(videoPlayerIconSpan);
videoPlaceHolderSpan.appendChild(mydiv);
insertAfter(videoPlaceHolderSpan, a);
a.style.cssText += ";width: " + obj.w + "px !important;";
a.setAttribute("width",obj.w);
if(window.__zoom!=1){
a.style.display = "block";
videoPlaceHolderSpan.style.display = "none";
a.setAttribute("_ratio",obj.ratio);
a.setAttribute("_vid",vid);
}else{
videoPlaceHolderSpan.style.cssText += "height: " + obj.h + "px !important;";
mydiv.style.cssText += "height: " + obj.h + "px !important;";
a.style.cssText += "height: " + obj.h + "px !important;";
a.setAttribute("height",obj.h);
}
a.setAttribute("data-vh",obj.vh);
a.setAttribute("data-vw",obj.vw);
if(a.getAttribute("data-mpvid")){
a.setAttribute("data-src",location.protocol+"//mp.weixin.qq.com/mp/readtemplate?t=pages/video_player_tmpl&auto=0&vid="+vid);
}else{
a.setAttribute("data-src",location.protocol+"//v.qq.com/iframe/player.html?vid="+ vid + "&width="+obj.vw+"&height="+obj.vh+"&auto=0");
}
}
})();
(function(){
if(window.__zoom!=1){
if (!window.__second_open__) {
document.getElementById('page-content').style.zoom = window.__zoom;
var a = document.getElementById('activity-name');
var b = document.getElementById('meta_content');
if(!!a){
a.style.zoom = 1/window.__zoom;
}
if(!!b){
b.style.zoom = 1/window.__zoom;
}
}
var images = document.getElementsByTagName('img');
for (var i = 0,il=images.length;i=0 && child.getAttribute("data-vid")==vid){
child.style.cssText += "height: " + h + "px !important;";
child.style.display = "";
}
}
}
}
})();
})();
前往“发现”-“看一看”浏览“朋友在看”