platform总线是学习linux驱动必须要掌握的一个知识点。
本文参考已发布:Linux 3.14内核
一、概念
嵌入式系统中有很多的物理总线:I2c、SPI、USB、uart、PCIE、APB、AHB
linux从2.6起就加入了一套新的驱动管理和注册的机制platform平台总线,是一条虚拟的总线,并不是一个物理的总线。
相比 PCI、USB,它主要用于描述SOC上的片上资源。platform 所描述的资源有一个共同点:在CPU 的总线上直接取址。
平台设备会分到一个名称(用在驱动绑定中)以及一系列诸如地址和中断请求号(IRQ)之类的资源。
设备用platform_device表示,驱动用platform_driver进行注册。
与传统的bus/device/driver机制相比,platform由内核进行统一管理,在驱动中使用资源,提高了代码的安全性和可移植性。
二、platform
1. platform总线两个最重要的结构体
platform维护的所有的驱动都必须要用该结构体定义:
platform_driver
struct platform_driver { int (*probe)(struct platform_device *); // int (*remove)(struct platform_device *); void (*shutdown)(struct platform_device *); int (*suspend)(struct platform_device *, pm_message_t state); int (*resume)(struct platform_device *); struct device_driver driver ; const struct platform_device_id *id_table ; bool prevent_deferred_probe; };
该结构体,用于注册驱动到platform总线,
成员
含义
probe
当驱动和硬件信息匹配成功之后,就会调用probe函数,驱动所有的资源的注册和初始化全部放在probe函数中
remove
硬件信息被移除了,或者驱动被卸载了,全部要释放,释放资源的操作就放在该函数中
struct device_driver driver
内核维护的所有的驱动必须包含该成员,通常driver->name用于和设备进行匹配
const struct platform_device_id *id_table
往往一个驱动可能能同时支持多个硬件,这些硬件的名字都放在该结构体数组中
我们编写驱动的时候往往需要填充以上几个成员
platform_device
platform总线用于描述设备硬件信息的结构体,包括该硬件的所有资源(io,memory、中断、DMA等等)。
struct platform_device { const char *name; int id; bool id_auto; struct device dev ; u32 num_resources; struct resource *resource ; const struct platform_device_id *id_entry ; /* MFD cell pointer */ struct mfd_cell *mfd_cell ; /* arch specific additions */ struct pdev_archdata archdata ; };
成员
含义
const char *name
设备的名字,用于和驱动进行匹配的
struct device dev
内核中维护的所有的设备必须包含该成员,
u32 num_resources
资源个数
struct resource *resource
描述资源
struct device dev->release()必须实现,
其中描述硬件信息的成员struct resource
0x139d0000
struct resource { resource_size_t start; //表示资源的起始值, resource_size_t end; //表示资源的最后一个字节的地址, 如果是中断,end和satrt相同 const char *name; // 可不写 unsigned long flags; //资源的类型 struct resource *parent , *sibling , *child ; }; flags的类型说明#define IORESOURCE_MEM 0x00000200 //内存 #define IORESOURCE_IRQ 0x00000400 //中断
内核管理的所有的驱动,都必须包含一个叫
struct device_driver
成员, //男性描述的硬件,必须包含
struct device
结构体成员。 //女性
struct device_driver { const char *name; struct bus_type *bus ; struct module *owner ; const char *mod_name; /* used for built-in modules */ bool suppress_bind_attrs; /* disables bind/unbind via sysfs */ const struct of_device_id *of_match_table ; const struct acpi_device_id *acpi_match_table ; int (*probe) (struct device *dev); int (*remove) (struct device *dev); void (*shutdown) (struct device *dev); int (*suspend) (struct device *dev, pm_message_t state); int (*resume) (struct device *dev); const struct attribute_group **groups ; const struct dev_pm_ops *pm ; struct driver_private *p ; };
其中:
const char *name;
用于和硬件进行匹配。
内核描述硬件,必须包含
struct device
结构体成员:
struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; const char *init_name; /* initial name of the device */ const struct device_type *type ; struct mutex mutex ; /* mutex to synchronize calls to * its driver. */ struct bus_type *bus ; /* type of bus device is on */ struct device_driver *driver ; /* which driver has allocated this device */ void *platform_data; /* Platform specific data, device core doesn't touch it */ struct dev_pm_info power ; struct dev_pm_domain *pm_domain ;#ifdef CONFIG_PINCTRL struct dev_pin_info *pins ;#endif #ifdef CONFIG_NUMA int numa_node; /* NUMA node this device is close to */ #endif u64 *dma_mask; /* dma mask (if dma'able device) */ u64 coherent_dma_mask;/* Like dma_mask, but for alloc_coherent mappings as not all hardware supports 64 bit addresses for consistent allocations such descriptors. */ struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; /* dma pools (if dma'ble) */ struct dma_coherent_mem *dma_mem ; /* internal for coherent mem override */ #ifdef CONFIG_DMA_CMA struct cma *cma_area ; /* contiguous memory area for dma allocations */ #endif /* arch specific additions */ struct dev_archdata archdata ; struct device_node *of_node ; /* associated device tree node */ struct acpi_dev_node acpi_node ; /* associated ACPI device node */ dev_t devt; /* dev_t, creates the sysfs "dev" */ u32 id; /* device instance */ spinlock_t devres_lock; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; const struct attribute_group **groups ; /* optional groups */ void (*release)(struct device *dev); struct iommu_group *iommu_group ; bool offline_disabled:1 ; bool offline:1 ; };
其中:
void (*release)(struct device *dev);
不能为空。
2. 如何注册
要用注册一个platform驱动的步骤
1)注册驱动platform_device_register
/** * platform_device_register - add a platform-level device * @pdev: platform device we're adding */ int platform_device_register (struct platform_device *pdev) { device_initialize(&pdev->dev); arch_setup_pdev_archdata(pdev); return platform_device_add(pdev); }
2) 注册设备platform_driver_register
#define platform_driver_register(drv) \ __platform_driver_register(drv, THIS_MODULE)
三、举例
1. 开发步骤
platform 总线下驱动的开发步骤是:
设备
需要实现的结构体是:platform_device 。
1)初始化 resource 结构变量
2)初始化 platform_device 结构变量
3)向系统注册设备:platform_device_register。
以上三步,必须在设备驱动加载前完成,即执行platform_driver_register()之前,原因是驱动注册时需要匹配内核中所有已注册的设备名。
platform_driver_register()中添加device到内核最终还是调用的device_add函数。
Platform_device_add和device_add最主要的区别是多了一步insert_resource(p, r),即将platform资源(resource)添加进内核,由内核统一管理。
驱动
驱动注册中,需要实现的结构体是:platform_driver 。
在驱动程序的初始化函数中,调用了platform_driver_register()注册 platform_driver 。
需要注意的是:platform_driver 和 platform_device 中的 name 变量的值必须是相同的【
在不考虑设备树情况下
,关于设备树,后面会写新的文章详细讲述】 。
这样在
platform_driver_register() 注册时,会将当前注册的 platform_driver 中的 name
变量的值和已注册的所有 platform_device 中的 name 变量的值进行比较,只有找到具有相同名称的 platform_device
才能注册成功。
当注册成功时,会调用 platform_driver 结构元素 probe 函数指针。
实例1
本例比较简单,只用于测试platform_driver 和platform_device是否可以匹配成功。
左边是platform_device结构体注册的代码,右边是platform_driver结构体注册的代码。
platform_driver 定义和注册:
1 #include 2 #include 3 #include 4 #include 5 6 static int hello_probe (struct platform_device *pdev) 7 { 8 printk("match ok \n" ); 9 return 0 ; 10 } 11 static int hello_remove (struct platform_device *pdev) 12 { 13 printk("hello_remove \n" ); 14 return 0 ; 15 } 16 static struct platform_driver hello_driver = 17 { 18 .probe = hello_probe, 19 .driver.name = "duang" , 20 .remove = hello_remove, 21 }; 22 static int hello_init (void ) 23 { 24 printk("hello_init \n" ); 25 return platform_driver_register(&hello_driver); 26 } 27 static void hello_exit (void ) 28 { 29 printk("hello_exit \n" ); 30 platform_driver_unregister(&hello_driver); 31 return ; 32 } 33 MODULE_LICENSE("GPL" ); 34 module_init(hello_init); 35 module_exit(hello_exit);
platform_device定义和注册:
1 #include 2 #include 3 #include 4 #include 5 6 static void hello_release (struct device *dev) 7 { 8 return ; 9 } 10 static struct platform_device hello_device = 11 { 12 .name = "duang" , 13 .id = -1 , 14 .dev.release = hello_release, 15 }; 16 17 18 static int hello_init (void ) 19 { 20 printk("hello_init \n" ); 21 return platform_device_register(&hello_device); 22 23 } 24 static void hello_exit (void ) 25 { 26 printk("hello_exit \n" ); 27 platform_device_unregister(&hello_device); 28 return ; 29 } 30 MODULE_LICENSE("GPL" ); 31 module_init(hello_init); 32 module_exit(hello_exit);
该程序只用于测试platform框架是否可以成功匹配,struct platform_device hello_device 并没有设置任何硬件信息。
Makfile
1 ifneq ($(KERNELRELEASE),) 2 obj-m:=device.o driver.o 3 else 4 KDIR :=/lib/modules/$(shell uname -r)/build 5 PWD :=$(shell pwd) 6 all: 7 make -C $(KDIR) M=$(PWD) modules 8 clean: 9 rm -f *.ko *.o *.mod.o *.symvers *.cmd *.mod.c *.order 10 endif
该makefile可以同时将两个C文件编译成ko文件。
编译:
编译
编译生成的文件:
在这里插入图片描述
加载模块
清空log 信息 sudo dmesg -c
匹配成功
实例2
给结构体platform_device 增加硬件信息,并在内核中能够读取出来。本例向结构体hello_device 增加信息如下:
基址寄存器地址0x139d0000,该地址的空间是0x4
中断号199
【注意】
实际的内核中会把外设的中断号根据HW id(通常soc厂商设备soc的时候会给每一个中断源定义好唯一的ID)计算出一个新的中断号,该中断号会被cpu所识别。
device.c
struct resource res []={ [0 ] ={ .start = 0x139d0000 , .end = 0x139d0000 + 0x3 , .flags = IORESOURCE_MEM, }, [1 ] ={ .start = 199 , .end = 199 , .flags = IORESOURCE_IRQ, }, };static struct platform_device hello_device = { .name = "duang" , .id = -1 , .dev.release = hello_release, .num_resources = ARRAY_SIZE(res), .resource = res, };
driver.c
static int hello_probe (struct platform_device *pdev) { printk("match ok \n" ); printk("mem = %x \n" ,pdev->resource[0 ].start); printk("irq = %d \n" ,pdev->resource[1 ].start); //注册中断、申请内存 return 0 ; }
重新编译,卸载第一个例子的模块,并清除log:
make sudo rmmod device sudo rmmod driver sudo dmesg -c
执行
由结果可知,probe函数正确读取到了硬件信息。
四、platform_device是如何管理的?
1. 没有设备树
在没有设备树的时候,以三星
Cortex-A8 s5pc100
为例,硬件信息放在以下位置