王雪纯:
刚才张博士提到一个关键词词——「痛点」,就像张院士也提到的,基础研究领域同样也有痛点和局限性,只有非常理性、负责任的科学家和企业,才会真的理解这个痛点,从而从痛点入手去找到一个新的起点。另外我也想请各位嘉宾从应用的角度,比如说智能交通、智能金融、智能制造等方面,谈谈目前所面临的痛点,以及最能够为大众所感知的痛点在哪。
张钹院士:
比如自动驾驶,现在为什么在动态复杂的环境下还没法用?从基础研究的角度来看就是人工智能现在还不能实现随机应变、举一反三。我认为这个基本问题如果无法得到解决的话,自动驾驶汽车根本就没法儿到复杂路况上开。当然,我们可以考虑另外的思路,比如说直接改变道路,将复杂的路况变成单行道或者结构化的路。
如果你将所有的希望都压在自动驾驶车上,那我们就只能到人工智能技术层面去寻找突破,然而我认为这种突破是非常难的,需要相当长的时间。
所以我之前也跟李院士讨论,我的看法是自动驾驶不能将所有的压力都施加在车上,而应该考虑在道路上解决问题,这样的话,人工智能所承受的压力就小了,甚至当道路都变成结构化的道路或专用道时,目前自动驾驶遇到的问题都不需要解决了。所以我一直在强调,
人工智能确实存在很多基础性问题,但是我们在解决实际问题的时候,我们可以从另外的角度出发去思考解决问题的方法。
(转向李德毅院士,笑着说)你如果觉得不对的话,可以反驳我。
李德毅院士:
我从另外一个角度讲下这个痛点。现在各个省、直辖市都在谈落地产品、落地场景,那什么叫落地场景呢?
我从另外一个观点讲这个痛点,因为各个省、直辖市都在讲落地产品、落地场景。
什么叫落地场景呢?其实就是指最需要改革的痛点。
比如说要将无人驾驶技术应用到港口地区,痛点是什么?是司机的成本。
我们之前到矿山区调研,矿山老板对我们说得很直接:如果你不能降低我的成本,你就靠边站,我并不 care 技术是自动化还是智能化,我要的就是降低成本,你们不是说无人矿吗?机器能够一天 24 小时给我挖煤、运矿吗?如果不能降低我的成本,我要无人车干嘛?在这个场景中,无人车只能承担运输的任务而不能解决两头的有效作业,所以无人车并不能解决这个场景中的痛点。
而找到痛点后,我们还需要将人工智能技术融入到现有系统中。
比如说张院士做的医疗系统,很好,但是一定得跟现有的医生看病系统兼容,如果不能兼容,就需要将医院的现有系统打破才能使用,这样的话,医疗是下不了这么大决心的。所以,人工智能技术只有能够兼容到现有系统中,才能够有持续发展的可能。
所以我认为,
人工智能在场景落地中,第一步要切中场景的痛点,这是最难的点;第二步是要能够融入到现有的系统中;在前面两步都实现后,第三步就可以进行大面积的技术推广了。
而在大面积的技术推广中,我们不能说得太过,比如说将应用了无人驾驶技术的港口称作「无人港」,这是不准确的,因为实际上只是将几千人的港口变成几百或几十人的港口,人是不可缺少的。所以
大家在技术宣传上要注意的一点是,人工智能技术的应用只是说能够实现少数人和多数机器系统的协同,而不是让机器完全取代人类。
张正友博士:
刚才主持人讲到智能制造,我在这里可以稍微讲一下,因为我之前参观了一些工厂,了解过企业智能制造的痛点在哪里。
现在智能制造的大部分工厂都已经实现自动化了,并且自动化程度都相当高,目前剩下还未自动化的,一个就是要求非常精细的装配部分,目前还需要人工进行装配;另一个就是质量检测,需要人工将屏幕等产品翻起来从不同角度进行检测,涉及到非常精巧的操作。如果人工智能能够对些更加精细的工作有所帮助,可以大大提高整个智能制造的效率。
我现在在腾讯负责的机器人实验室,就在研究如何提高机械手的触觉能力,一旦机械手的这种能力得到提高,很多此类相关问题就能迎刃而解了,不过目前虽然这些问题还解决不了,但是我们知道最主要的痛点,依旧可以往前推进智能制造。
另外我想讲一下研究和应用之间的关系。
现在很多做研究的人往往对应用嗤之以鼻,觉得应用是太工程化的东西,不愿意花精力去了解,所以很多研究者往往都跟在别人的后面,去刷榜费心费力提高百分之零点几的性能等等,其实并没有多少原创,也没有花精力去理解这个问题。
实际上,去找到某个场景的痛点,然后将它抽象到一定高度,并找到解决这个问题的方法,这就是原创的东西,而且这种解决方案是可以泛化到其他领域。
因此,研究者一定要逐渐培养这种心态。这就是我为什么非常强调用场景来驱动研究,因为场景能够帮助研究者找到一些真正的技术难点,一旦能够解决这些难点,就能够举一反三。
肖京博士:
我非常同意刚才李院士说的,人工智能在落地到某个场景前,要先把场景的痛点了解清楚,并仔细梳理整个流程,如果一开始就说这个东西完全是自动化的,实际上大部分任务都完不成,所以分辨出哪些任务由机器协助完成、哪些任务由人来做,才能提升整体的效率和质量。
然而为了解决某个痛点,实际上会导致人工智能技术的应用进展很慢、成本也非常高。
另外,我们国家在人工智能的很多场景应用的管理规划和标准上都比较缺乏,虽然国家现在在逐渐建立,还目前还是比较少,这就会带来很多问题。比如
说前段时间的互联网金融问题,虽然监管部门也想管好,但是无能为力。
在未来的人工智能应用市场,会出现很多这种良莠不齐的现象,所以国家现在需要大力加强规范和标准的建立。除此之外,现在在数据方面,同样由于缺乏规范,导致数据的使用混乱,风险也很大,那
如何在对数据进行约束同时又不会限制对数据需求量巨大的人工智能的发展呢? 这同样也是现在亟待解决的一个两难的问题。
王雪纯:
所以说现在为什么科学家和企业家们总是心事重重,原来是因为他们老是在找痛点,但也正是因为这样,我们对人工智能的未来发展才更加有希望。
本场论坛设置的时间为一个小时,所以在聊了以上三个话题后,王雪纯提议,将后面剩余的一点时间留给台下的听众提问。我们来看现场的听众们又提了哪些问题。