来源:投稿 作者:Fairy
编辑:学姐
前言
在进行机器学习和深度学习建模之前,如果想要达到一个较好的效果。那么,对于数据的前期处理是非常有必要的。而Python中进行数据处理用的最多的还是Pandas库。今天这篇文章,就教大家10分钟掌握Pandas库。
再正式使用这个库之前,我们需要先导入这个库:
In [1]: import numpy as np
In [2]: import pandas as pd
数据结构
Pandas提供了两种类型的类来处理数据:
-
Series
:一维标记数组,保存任何类型的数据。例如整数、字符串、Python对象等。
-
DataFrame
:一种二维数据结构,它保存的数据类似于二维数组或具有行和列的表。
构造数据
那么如何构造这样一个Series和DataFrame对象呢?
1、通过传递一个值列表来创建一个
Series
,让pandas创建一个默认的
RangeIndex
。
In [3]: s = pd.Series([1, 3, 5, np.nan, 6, 8])
In [4]: s
Out[4]:
0 1.0
1 3.0
2 5.0
3 NaN
4 6.0
5 8.0
dtype: float64
2、通过使用
date_range()
和标记列传递带有日期时间索引的NumPy数组来创建
DataFrame
In [5]: dates = pd.date_range("20130101", periods=6)
In [6]: dates
Out[6]:
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
'2013-01-05', '2013-01-06'],
dtype='datetime64[ns]', freq='D')
In [7]: df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list("ABCD"))
In [8]: df
Out[8]:
A B C D
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
2013-01-04 0.721555 -0.706771 -1.039575 0.271860
2013-01-05 -0.424972 0.567020 0.276232 -1.087401
2013-01-06 -0.673690 0.113648 -1.478427 0.524988
3、通过传递一个对象字典来创建
DataFrame
,其中键是列标签,值是列值
In [9]: df2 = pd.DataFrame(
...: {
...: "A": 1.0,
...: "B": pd.Timestamp("20130102"),
...: "C": pd.Series(1, index=list(range(4)), dtype="float32"),
...: "D": np.array([3] * 4, dtype="int32"),
...: "E": pd.Categorical(["test", "train", "test", "train"]),
...: "F": "foo",
...: }
...: )
...:
In [10]: df2
Out[10]:
A B C D E F
0 1.0 2013-01-02 1.0 3 test foo
1 1.0 2013-01-02 1.0 3 train foo
2 1.0 2013-01-02 1.0 3 test foo
3 1.0 2013-01-02 1.0 3 train foo
查看数据
使用
DataFrame.head()
和
DataFrame.tail()
分别查看数据框的顶行和底行。
In [13]: df.head()
Out[13]:
A B C D
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03
-0.861849 -2.104569 -0.494929 1.071804
2013-01-04 0.721555 -0.706771 -1.039575 0.271860
2013-01-05 -0.424972 0.567020 0.276232 -1.087401
In [14]: df.tail(3)
Out[14]:
A B C D
2013-01-04 0.721555 -0.706771 -1.039575 0.271860
2013-01-05 -0.424972 0.567020 0.276232 -1.087401
2013-01-06 -0.673690 0.113648 -1.478427 0.524988
DataFrame.index
或
DataFrame.columns
可以先是数据框的行名或者列名。
In [15]: df.index
Out[15]:
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
'2013-01-05', '2013-01-06'],
dtype='datetime64[ns]', freq='D')
In [16]: df.columns
Out[16]: Index(['A', 'B', 'C', 'D'], dtype='object')
DataFrame.to_numpy()
可以将数据框转换为底层数组的NumPy表示,不包含索引或列标签。
describe()
显示数据的快速统计摘要。
In [20]: df.describe()
Out[20]:
A B C D
count 6.000000 6.000000 6.000000 6.000000
mean 0.073711 -0.431125 -0.687758 -0.233103
std 0.843157 0.922818 0.779887 0.973118
min -0.861849 -2.104569 -1.509059 -1.135632
25% -0.611510 -0.600794 -1.368714 -1.076610
50% 0.022070 -0.228039 -0.767252 -0.386188
75% 0.658444 0.041933 -0.034326 0.461706
max 1.212112 0.567020 0.276232 1.071804
我们还可以转置您的数据。
In [21]: df.T
Out[21]:
2013-01-01 2013-01-02 2013-01-03 2013-01-04 2013-01-05 2013-01-06
A 0.469112 1.212112 -0.861849 0.721555 -0.424972 -0.673690
B -0.282863 -0.173215 -2.104569 -0.706771 0.567020 0.113648
C -1.509059 0.119209 -0.494929 -1.039575 0.276232 -1.478427
D -1.135632 -1.044236 1.071804 0.271860 -1.087401 0.524988
DataFrame.sort_index()
按轴排序。
In [22]: df.sort_index(axis=1, ascending=False)
Out[22]:
D C B A
2013-01-01 -1.135632 -1.509059 -0.282863 0.469112
2013-01-02 -1.044236 0.119209 -0.173215 1.212112
2013-01-03 1.071804 -0.494929 -2.104569 -0.861849
2013-01-04 0.271860 -1.039575 -0.706771 0.721555
2013-01-05 -1.087401 0.276232 0.567020 -0.424972
2013-01-06 0.524988 -1.478427 0.113648 -0.673690
DataFrame.sort_values()
按值排序。
In [23]: df.sort_values(by="B")
Out[23]:
A B C D
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
2013-01-04 0.721555 -0.706771 -1.039575 0.271860
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-06 -0.673690
0.113648 -1.478427 0.524988
2013-01-05 -0.424972 0.567020 0.276232 -1.087401
选择数据
对于
DataFrame
,传递一个标签选择一个列,并产生一个等价于
df.A
的
Series
。
In [24]: df["A"]
Out[24]:
2013-01-01 0.469112
2013-01-02 1.212112
2013-01-03 -0.861849
2013-01-04 0.721555
2013-01-05 -0.424972
2013-01-06 -0.673690
Freq: D, Name: A, dtype: float64
对于
DataFrame
,传递切片
:
选择匹配的行。
In [25]: df[0:3]
Out[25]:
A B C D
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
In [26]: df["20130102":"20130104"]
Out[26]:
A B C D
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
2013-01-04 0.721555 -0.706771 -1.039575 0.271860
选择与标签匹配的行。
In [27]: df.loc[dates[0]]
Out[27]:
A 0.469112
B -0.282863
C -1.509059
D -1.135632
Name: 2013-01-01 00:00:00, dtype: float64
选择带有选择列标签的所有行(
:
)。
In [28]: df.loc[:, ["A", "B"]]
Out[28]:
A B
2013-01-01 0.469112 -0.282863
2013-01-02 1.212112 -0.173215
2013-01-03 -0.861849 -2.104569
2013-01-04 0.721555 -0.706771
2013-01-05 -0.424972 0.567020
2013-01-06 -0.673690 0.113648
对于标签切片,包括两个端点。
In [29]: df.loc["20130102":"20130104", ["A", "B"]]
Out[29]:
A B
2013-01-02 1.212112 -0.173215
2013-01-03 -0.861849 -2.104569
2013-01-04 0.721555 -0.706771
选择单个行和列标签将返回标量。
In [30]: df.loc[dates[0], "A"]
Out[30]: 0.4691122999071863
为了快速访问标量(相当于前面的方法)。
In [31]: df.at[dates[0], "A"]
Out[31]: 0.4691122999071863
通过传递的整数的位置进行选择。
In [32]: df.iloc[3]
Out[32]:
A 0.721555
B -0.706771
C -1.039575
D 0.271860
Name: 2013-01-04 00:00:00, dtype: float64
Python切片的作用类似于NumPy/Python。
In [33]: df.iloc[3:5, 0:2
]
Out[33]:
A B
2013-01-04 0.721555 -0.706771
2013-01-05 -0.424972 0.567020
传递整数位置列表。
In [34]: df.iloc[[1, 2, 4], [0, 2]]
Out[34]:
A C
2013-01-02 1.212112 0.119209
2013-01-03 -0.861849 -0.494929
2013-01-05 -0.424972 0.276232
对于显式切片行。
In [35]: df.iloc[1:3, :]
Out[35]:
A B C D
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
对于显式切片列。
In [36]: df.iloc[:, 1:3]
Out[36]:
B C
2013-01-01 -0.282863 -1.509059
2013-01-02 -0.173215 0.119209
2013-01-03 -2.104569 -0.494929
2013-01-04 -0.706771 -1.039575
2013-01-05 0.567020 0.276232
2013-01-06 0.113648 -1.478427
对于显式获取值。
In [37]: df.iloc[1, 1]
Out[37]: -0.17321464905330858
为了快速访问标量(相当于前面的方法)。
In [38]: df.iat[1, 1]
Out[38]: -0.17321464905330858
选择
df.A
大于
0
的行。
In [39]: df[df["A"] > 0]
Out[39]:
A B C D
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-04 0.721555 -0.706771 -1.039575 0.271860
从满足布尔条件的
DataFrame
中选择值。
In [40]: df[df > 0]
Out[40]:
A B C D
2013-01-01 0.469112 NaN NaN NaN
2013-01-02 1.212112 NaN 0.119209 NaN
2013-01-03 NaN NaN NaN 1.071804
2013-01-04 0.721555 NaN NaN 0.271860
2013-01-05 NaN 0.567020 0.276232 NaN
2013-01-06 NaN 0.113648 NaN 0.524988
使用
isin()
方法过滤。
In [41]: df2 = df.copy()
In [42]: df2["E"] = ["one", "one", "two", "three", "four", "three"]
In [43]: df2
Out[43]:
A B C D E
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 one
2013-01-02 1.212112 -0.173215 0.119209 -1.044236 one
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 two
2013-01-04 0.721555 -0.706771 -1.039575 0.271860 three
2013-01-05 -0.424972 0.567020 0.276232 -1.087401 four
2013-01-06 -0.673690 0.113648
-1.478427 0.524988 three
In [44]: df2[df2["E"].isin(["two", "four"])]
Out[44]:
A B C D E
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 two
2013-01-05 -0.424972 0.567020 0.276232 -1.087401 four
设置新列会自动按索引对齐数据。
In [45]: s1 = pd.Series([1, 2, 3, 4, 5, 6], index=pd.date_range("20130102", periods=6))
In [46]: s1
Out[46]:
2013-01-02 1
2013-01-03 2
2013-01-04 3
2013-01-05 4
2013-01-06 5
2013-01-07 6
Freq: D, dtype: int64
In [47]: df["F"] = s1
按标签设置值。
In [48]: df.at[dates[0], "A"] = 0
按位置设置值。
In [49]: df.iat[0, 1] = 0
通过使用NumPy数组赋值进行设置。
In [50]: df.loc[:, "D"] = np.array([5] * len(df))
缺失值处理
对于NumPy数据类型,
np.nan
表示缺失数据。默认情况下,它不包括在计算中。
重新索引允许您更改/添加/删除指定轴上的索引。这将返回数据的副本。
In [55]: df1 = df.reindex(index=dates[0:4], columns=list(df.columns) + ["E"])
In [56]: df1.loc[dates[0] : dates[1], "E"] = 1
In [57]: df1
Out[57]:
A B C D F E
2013-01-01 0.000000 0.000000 -1.509059 5.0 NaN 1.0
2013-01-02 1.212112 -0.173215 0.119209 5.0 1.0 1.0
2013-01-03 -0.861849 -2.104569 -0.494929 5.0 2.0 NaN
2013-01-04 0.721555 -0.706771 -1.039575 5.0 3.0 NaN
DataFrame.dropna()
删除所有缺少数据的行。
In [58]: df1.dropna(how="any")
Out[58]:
A B C D F E
2013-01-02 1.212112 -0.173215 0.119209 5.0 1.0 1.0
DataFrame.fillna()
填充缺失数据。
In [59]: df1.fillna(value=5)
Out[59]:
A B C D F E
2013-01-01 0.000000 0.000000 -1.509059 5.0 5.0 1.0
2013-01-02 1.212112 -0.173215 0.119209 5.0 1.0 1.0
2013-01-03 -0.861849 -2.104569 -0.494929 5.0 2.0 5.0
2013-01-04 0.721555 -0.706771 -1.039575 5.0 3.0 5.0
isna()
获取值为
nan
的布尔值。
In [60]: pd.isna(df1)
Out[60]:
A B C D F E
2013-01-01 False False False False True False
2013-01-02 False False False False False False
2013-01-03 False False False False False True
2013-01-04 False False False False False True
数据计算处理
计算每列的平均值。
In [61]: df.mean()
Out[61]:
A -0.004474
B -0.383981
C -0.687758
D 5.000000
F 3.000000
dtype: float64
计算每行的平均值。
In [62]: df.mean(axis=1)
Out[62]:
2013-01-01 0.872735
2013-01-02 1.431621
2013-01-03 0.707731
2013-01-04 1.395042
2013-01-05 1.883656
2013-01-06 1.592306
Freq: D, dtype: float64
使用另一个具有不同索引或列的
Series
或
DataFrame
进行操作将使结果与索引或列标签的并集对齐。此外,pandas会自动沿指定的维度进行沿着广播,并将使用
np.nan
填充未对齐的标签。
In [63]: s = pd.Series([1, 3, 5, np.nan, 6, 8], index=dates).shift(2)
In [64]: s
Out[64]:
2013-01-01 NaN
2013-01-02 NaN
2013-01-03 1.0
2013-01-04 3.0
2013-01-05 5.0
2013-01-06 NaN
Freq: D, dtype: float64
In [65]: df.sub(s, axis="index")
Out[65]:
A B C D F
2013-01-01 NaN NaN NaN NaN NaN
2013-01-02 NaN NaN NaN NaN NaN
2013-01-03 -1.861849 -3.104569 -1.494929 4.0 1.0
2013-01-04 -2.278445 -3.706771 -4.039575 2.0 0.0
2013-01-05 -5.424972 -4.432980 -4.723768 0.0 -1.0
2013-01-06 NaN NaN NaN NaN NaN
DataFrame.agg()
和
DataFrame.transform()
应用用户定义的函数,分别减少或广播其结果。
In [66]: df.agg(lambda x: np.mean(x) * 5.6)
Out[66]:
A -0.025054
B -2.150294
C -3.851445
D 28.000000
F 16.800000
dtype: float64
In [67]: df.transform(lambda x: x * 101.2)
Out[67]:
A B C D F
2013-01-01 0.000000 0.000000 -152.716721 506.0 NaN
2013-01-02 122.665737 -17.529322 12.063922 506.0 101.2
2013-01-03 -87.219115 -212.982405 -50.086843 506.0 202.4
2013-01-04 73.021382 -71.525239 -105.204988 506.0 303.6
2013-01-05 -43.007200 57.382459 27.954680 506.0 404.8
2013-01-06 -68.177398 11.501219 -149.616767 506.0 506.0
值计数。
In [68]: s = pd.Series(np.random.randint(0, 7, size=10))
In [69]: s
Out[69]:
0 4
1 2
2 1
3 2
4 6
5 4
6 4
7 6
8 4
9 4
dtype: int64
In [70]: s.value_counts()
Out[70]:
4 5
2 2
6 2
1 1
Name: count, dtype: int64
Series
在
str
属性中配备了一组字符串处理方法,可以轻松地对数组的每个元素进行操作,如下面的代码片段所示。
In [71
]: s = pd.Series(["A", "B", "C", "Aaba", "Baca", np.nan, "CABA", "dog", "cat"])
In [72]: s.str.lower()
Out[72]:
0 a
1 b
2 c
3 aaba
4 baca
5 NaN
6 caba
7 dog
8 cat
dtype: object
数据合并
pandas提供了各种工具,可以轻松地将
Series
和
DataFrame
对象与各种索引的集合逻辑组合在一起,并在连接/合并类型操作的情况下提供关系代数功能。
使用
concat()
按行连接pandas对象。
In [73]: df = pd.DataFrame(np.random.randn(10, 4))
In [74]: df
Out[74]:
0 1 2 3
0 -0.548702 1.467327 -1.015962 -0.483075
1 1.637550 -1.217659 -0.291519 -1.745505
2 -0.263952 0.991460 -0.919069 0.266046
3 -0.709661 1.669052 1.037882 -1.705775
4 -0.919854 -0.042379 1.247642 -0.009920
5 0.290213 0.495767 0.362949 1.548106
6 -1.131345 -0.089329 0.337863 -0.945867
7 -0.932132 1.956030 0.017587 -0.016692
8 -0.575247 0.254161 -1.143704 0.215897
9 1.193555 -0.077118 -0.408530 -0.862495
In [75]: pieces = [df[:3], df[3:7], df[7:]]
In [76]: pd.concat(pieces)
Out[76]:
0 1 2 3
0 -0.548702 1.467327 -1.015962 -0.483075
1 1.637550 -1.217659 -0.291519 -1.745505
2 -0.263952 0.991460 -0.919069 0.266046
3 -0.709661 1.669052 1.037882 -1.705775
4 -0.919854 -0.042379 1.247642 -0.009920
5 0.290213 0.495767 0.362949 1.548106
6 -1.131345 -0.089329 0.337863 -0.945867
7 -0.932132 1.956030 0.017587 -0.016692
8 -0.575247 0.254161 -1.143704 0.215897
9 1.193555 -0.077118 -0.408530 -0.862495
merge()
沿特定列启用SQL样式连接类型沿着。
In [77]: left = pd.DataFrame({"key": ["foo", "foo"], "lval": [1, 2]})
In [78]: right = pd.DataFrame({"key": ["foo", "foo"], "rval": [4, 5]})
In [79]: left
Out[79]:
key lval
0 foo 1
1 foo 2
In [80]: right
Out[80]:
key rval
0 foo 4
1 foo 5
In [81]: pd.merge(left, right, on="key")
Out[81]:
key lval rval
0 foo 1 4
1 foo 1 5
2 foo 2 4
3 foo 2 5
唯一密钥上的
merge()
。
In [82]: left = pd.DataFrame({"key": ["foo", "bar"], "lval": [1, 2]})
In [83]: right = pd.DataFrame({"key": ["foo", "bar"], "rval": [4, 5]})
In [84]: left
Out[84]:
key lval
0 foo 1
1 bar 2
In [85]: right
Out[85]:
key rval
0 foo 4
1 bar 5
In [86]: pd.merge(left, right, on="key")
Out[86]:
key lval rval
0 foo 1 4
1 bar 2 5
数据分组
通过"分组",我们指的是涉及以下步骤中的一个或多个的过程:
In [87]: df = pd.DataFrame(
....: {
....: "A": ["foo", "bar", "foo", "bar", "foo", "bar", "foo", "foo"],
....: "B": ["one", "one", "two", "three", "two", "two", "one", "three"],
....: "C": np.random.randn(8),
....: "D": np.random.randn(8),
....: }
....: )
....:
In [88]: df
Out[88]:
A B C D
0 foo one 1.346061 -1.577585
1 bar one 1.511763 0.396823
2 foo two 1.627081 -0.105381
3 bar three -0.990582 -0.532532
4 foo two -0.441652 1.453749
5 bar two 1.211526 1.208843
6 foo one 0.268520 -0.080952
7 foo three 0.024580 -0.264610
通过列标签进行标记,选择列标签,然后将
DataFrameGroupBy.sum()
函数应用于结果组。
In [89]: df.groupby("A")[["C", "D"]].sum()
Out[89]:
C D
A
bar 1.732707 1.073134
foo 2.824590 -0.574779
由多列标签表单
MultiIndex
填充。
In [90]: df.groupby(["A", "B"]).sum()
Out[90]:
C D
A B
bar one 1.511763 0.396823
three -0.990582 -0.532532
two 1.211526 1.208843
foo one 1.614581 -1.658537
three 0.024580 -0.264610
two 1.185429 1.348368
数据重塑
In [91]: arrays = [
....: ["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"],
....: ["one", "two", "one", "two", "one", "two", "one", "two"],
....: ]
....:
In [92]: index = pd.MultiIndex.from_arrays(arrays, names=["first", "second"])
In [93]: df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=["A", "B"])
In [94]: df2 = df[:4]
In [95]: df2
Out[95]:
A B
first second
bar one -0.727965 -0.589346
two 0.339969 -0.693205
baz one -0.339355 0.593616
two 0.884345 1.591431
stack()
方法“压缩”DataFrame的列中的一个级别。
In [96]: stacked = df2.stack(future_stack=True)
In [97]: stacked
Out[97]:
first second
bar one A -0.727965
B -0.589346
two A 0.339969
B -0.693205
baz one A -0.339355
B 0.593616
two A 0.884345
B 1.591431
dtype: float64
对于“堆叠”的DataFrame或Series(具有
MultiIndex
作为
index
),
stack()
的逆操作是
unstack()
,默认情况下,它会取消最后一层的堆叠。
In [98]: stacked.unstack()
Out[98]:
A B
first second
bar one -0.727965 -0.589346
two 0.339969 -0.693205
baz one -0.339355 0.593616
two 0.884345 1.591431
In [99]: stacked.unstack(1)
Out[99]:
second one two
first
bar A -0.727965 0.339969
B -0.589346 -0.693205
baz A -0.339355 0.884345
B 0.593616 1.591431
In [100]: stacked.unstack(0)
Out[100]:
first bar baz
second
one A -0.727965 -0.339355
B -0.589346 0.593616
two A 0.339969 0.884345
B -0.693205 1.591431
数据透视表。
In [101]: df = pd.DataFrame(
.....: {
.....: "A": ["one", "one", "two", "three"] * 3,
.....: "B": ["A", "B", "C"] * 4,
.....: "C": ["foo", "foo", "foo", "bar", "bar", "bar"] * 2,
.....: "D": np.random.randn(12),
.....: "E": np.random.randn(12),
.....: }
.....: )
.....:
In [102]: df
Out[102]:
A B C D E
0 one A foo -1.202872 0.047609
1 one B foo -1.814470 -0.136473
2 two C foo 1.018601 -0.561757
3 three A bar -0.595447 -1.623033
4 one B bar 1.395433 0.029399
5 one C bar -0.392670 -0.542108
6 two A foo 0.007207 0.282696
7 three B foo 1.928123 -0.087302
8 one C foo -0.055224 -1.575170
9 one A bar 2.395985 1.771208
10 two B bar 1.552825 0.816482
11 three C bar 0.166599 1.100230
pivot_table()
旋转
DataFrame
,指定
values
、
index
和 `columns。
In [103]: pd.pivot_table(df, values="D", index=["A", "B"], columns=["C"])
Out[103]:
C bar foo
A B
one A 2.395985