专栏名称: 学姐带你玩AI
这里有人工智能前沿信息、算法技术交流、机器学习/深度学习经验分享、AI大赛解析、大厂大咖算法面试分享、人工智能论文技巧、AI环境工具库教程等……学姐带你玩转AI!
目录
相关文章推荐
参考消息  ·  俄乌正在谈“全部换全部” ·  昨天  
参考消息  ·  特朗普宣布换人! ·  2 天前  
卢克文工作室  ·  上千元德国剃须刀平替,居然只要百元?!min ... ·  2 天前  
参考消息  ·  国产载人飞艇成功首飞! ·  2 天前  
参考消息  ·  克宫为特朗普“帮腔” ·  3 天前  
51好读  ›  专栏  ›  学姐带你玩AI

只需10分钟,搞定Pandas数据处理

学姐带你玩AI  · 公众号  ·  · 2024-05-15 18:18

正文

来源:投稿  作者:Fairy
编辑:学姐

前言

在进行机器学习和深度学习建模之前,如果想要达到一个较好的效果。那么,对于数据的前期处理是非常有必要的。而Python中进行数据处理用的最多的还是Pandas库。今天这篇文章,就教大家10分钟掌握Pandas库。

再正式使用这个库之前,我们需要先导入这个库:

In [1]: import numpy as np
In [2]: import pandas as pd

数据结构

Pandas提供了两种类型的类来处理数据:

  • Series :一维标记数组,保存任何类型的数据。例如整数、字符串、Python对象等。
  • DataFrame :一种二维数据结构,它保存的数据类似于二维数组或具有行和列的表。

构造数据

那么如何构造这样一个Series和DataFrame对象呢?

1、通过传递一个值列表来创建一个 Series ,让pandas创建一个默认的 RangeIndex

In [3]: s = pd.Series([135, np.nan, 68])
In [4]: s
Out[4]: 
0    1.0
1    3.0
2    5.0
3    NaN
4    6.0
5    8.0
dtype: float64

2、通过使用 date_range() 和标记列传递带有日期时间索引的NumPy数组来创建 DataFrame

In [5]: dates = pd.date_range("20130101", periods=6)

In [6]: dates
Out[6]: 
DatetimeIndex(['2013-01-01''2013-01-02''2013-01-03''2013-01-04',
               '2013-01-05''2013-01-06'],
              dtype='datetime64[ns]', freq='D')

In [7]: df = pd.DataFrame(np.random.randn(64), index=dates, columns=list("ABCD"))

In [8]: df
Out[8]: 
                   A         B         C         D
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
2013-01-04  0.721555 -0.706771 -1.039575  0.271860
2013-01-05 -0.424972  0.567020  0.276232 -1.087401
2013-01-06 -0.673690  0.113648 -1.478427  0.524988

3、通过传递一个对象字典来创建 DataFrame ,其中键是列标签,值是列值

In [9]: df2 = pd.DataFrame(
   ...:     {
   ...:         "A"1.0,
   ...:         "B": pd.Timestamp("20130102"),
   ...:         "C": pd.Series(1, index=list(range(4)), dtype="float32"),
   ...:         "D": np.array([3] * 4, dtype="int32"),
   ...:         "E": pd.Categorical(["test""train""test""train"]),
   ...:         "F""foo",
   ...:     }
   ...: )
   ...: 

In [10]: df2
Out[10]: 
     A          B    C  D      E    F
0  1.0 2013-01-02  1.0  3   test  foo
1  1.0 2013-01-02  1.0  3  train  foo
2  1.0 2013-01-02  1.0  3   test  foo
3  1.0 2013-01-02  1.0  3  train  foo

查看数据

使用 DataFrame.head() DataFrame.tail() 分别查看数据框的顶行和底行。

In [13]: df.head()
Out[13]: 
                   A         B         C         D
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-03  -0.861849 -2.104569 -0.494929  1.071804
2013-01-04  0.721555 -0.706771 -1.039575  0.271860
2013-01-05 -0.424972  0.567020  0.276232 -1.087401

In [14]: df.tail(3)
Out[14]: 
                   A         B         C         D
2013-01-04  0.721555 -0.706771 -1.039575  0.271860
2013-01-05 -0.424972  0.567020  0.276232 -1.087401
2013-01-06 -0.673690  0.113648 -1.478427  0.524988

DataFrame.index DataFrame.columns 可以先是数据框的行名或者列名。

In [15]: df.index
Out[15]: 
DatetimeIndex(['2013-01-01''2013-01-02''2013-01-03''2013-01-04',
               '2013-01-05''2013-01-06'],
              dtype='datetime64[ns]', freq='D')

In [16]: df.columns
Out[16]: Index(['A''B''C''D'], dtype='object')

DataFrame.to_numpy() 可以将数据框转换为底层数组的NumPy表示,不包含索引或列标签。

describe() 显示数据的快速统计摘要。

In [20]: df.describe()
Out[20]: 
              A         B         C         D
count  6.000000  6.000000  6.000000  6.000000
mean   0.073711 -0.431125 -0.687758 -0.233103
std    0.843157  0.922818  0.779887  0.973118
min   -0.861849 -2.104569 -1.509059 -1.135632
25%   -0.611510 -0.600794 -1.368714 -1.076610
50%    0.022070 -0.228039 -0.767252 -0.386188
75%    0.658444  0.041933 -0.034326  0.461706
max    1.212112  0.567020  0.276232  1.071804

我们还可以转置您的数据。

In [21]: df.T
Out[21]: 
   2013-01-01  2013-01-02  2013-01-03  2013-01-04  2013-01-05  2013-01-06
A    0.469112    1.212112   -0.861849    0.721555   -0.424972   -0.673690
B   -0.282863   -0.173215   -2.104569   -0.706771    0.567020    0.113648
C   -1.509059    0.119209   -0.494929   -1.039575    0.276232   -1.478427
D   -1.135632   -1.044236    1.071804    0.271860   -1.087401    0.524988

DataFrame.sort_index() 按轴排序。

In [22]: df.sort_index(axis=1, ascending=False)
Out[22]: 
                   D         C         B         A
2013-01-01 -1.135632 -1.509059 -0.282863  0.469112
2013-01-02 -1.044236  0.119209 -0.173215  1.212112
2013-01-03  1.071804 -0.494929 -2.104569 -0.861849
2013-01-04  0.271860 -1.039575 -0.706771  0.721555
2013-01-05 -1.087401  0.276232  0.567020 -0.424972
2013-01-06  0.524988 -1.478427  0.113648 -0.673690

DataFrame.sort_values() 按值排序。

In [23]: df.sort_values(by="B")
Out[23]: 
                   A         B         C         D
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
2013-01-04  0.721555 -0.706771 -1.039575  0.271860
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-06 -0.673690   0.113648 -1.478427  0.524988
2013-01-05 -0.424972  0.567020  0.276232 -1.087401

选择数据

对于 DataFrame ,传递一个标签选择一个列,并产生一个等价于 df.A Series

In [24]: df["A"]
Out[24]: 
2013-01-01    0.469112
2013-01-02    1.212112
2013-01-03   -0.861849
2013-01-04    0.721555
2013-01-05   -0.424972
2013-01-06   -0.673690
Freq: D, Name: A, dtype: float64

对于 DataFrame ,传递切片 : 选择匹配的行。

In [25]: df[0:3]
Out[25]: 
                   A         B         C         D
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804

In [26]: df["20130102":"20130104"]
Out[26]: 
                   A         B         C         D
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
2013-01-04  0.721555 -0.706771 -1.039575  0.271860

选择与标签匹配的行。

In [27]: df.loc[dates[0]]
Out[27]: 
A    0.469112
B   -0.282863
C   -1.509059
D   -1.135632
Name: 2013-01-01 00:00:00, dtype: float64

选择带有选择列标签的所有行( : )。

In [28]: df.loc[:, ["A""B"]]
Out[28]: 
                   A         B
2013-01-01  0.469112 -0.282863
2013-01-02  1.212112 -0.173215
2013-01-03 -0.861849 -2.104569
2013-01-04  0.721555 -0.706771
2013-01-05 -0.424972  0.567020
2013-01-06 -0.673690  0.113648

对于标签切片,包括两个端点。

In [29]: df.loc["20130102":"20130104", ["A""B"]]
Out[29]: 
                   A         B
2013-01-02  1.212112 -0.173215
2013-01-03 -0.861849 -2.104569
2013-01-04  0.721555 -0.706771

选择单个行和列标签将返回标量。

In [30]: df.loc[dates[0], "A"]
Out[30]: 0.4691122999071863

为了快速访问标量(相当于前面的方法)。

In [31]: df.at[dates[0], "A"]
Out[31]: 0.4691122999071863

通过传递的整数的位置进行选择。

In [32]: df.iloc[3]
Out[32]: 
A    0.721555
B   -0.706771
C   -1.039575
D    0.271860
Name: 2013-01-04 00:00:00, dtype: float64

Python切片的作用类似于NumPy/Python。

In [33]: df.iloc[3:50:2




    
]
Out[33]: 
                   A         B
2013-01-04  0.721555 -0.706771
2013-01-05 -0.424972  0.567020

传递整数位置列表。

In [34]: df.iloc[[124], [02]]
Out[34]: 
                   A         C
2013-01-02  1.212112  0.119209
2013-01-03 -0.861849 -0.494929
2013-01-05 -0.424972  0.276232

对于显式切片行。

In [35]: df.iloc[1:3, :]
Out[35]: 
                   A         B         C         D
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804

对于显式切片列。

In [36]: df.iloc[:, 1:3]
Out[36]: 
                   B         C
2013-01-01 -0.282863 -1.509059
2013-01-02 -0.173215  0.119209
2013-01-03 -2.104569 -0.494929
2013-01-04 -0.706771 -1.039575
2013-01-05  0.567020  0.276232
2013-01-06  0.113648 -1.478427

对于显式获取值。

In [37]: df.iloc[11]
Out[37]: -0.17321464905330858

为了快速访问标量(相当于前面的方法)。

In [38]: df.iat[11]
Out[38]: -0.17321464905330858

选择 df.A 大于 0 的行。

In [39]: df[df["A"] > 0]
Out[39]: 
                   A         B         C         D
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-04  0.721555 -0.706771 -1.039575  0.271860

从满足布尔条件的 DataFrame 中选择值。

In [40]: df[df > 0]
Out[40]: 
                   A         B         C         D
2013-01-01  0.469112       NaN       NaN       NaN
2013-01-02  1.212112       NaN  0.119209       NaN
2013-01-03       NaN       NaN       NaN  1.071804
2013-01-04  0.721555       NaN       NaN  0.271860
2013-01-05       NaN  0.567020  0.276232       NaN
2013-01-06       NaN  0.113648       NaN  0.524988

使用 isin() 方法过滤。

In [41]: df2 = df.copy()

In [42]: df2["E"] = ["one""one""two""three""four""three"]

In [43]: df2
Out[43]: 
                   A         B         C         D      E
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632    one
2013-01-02  1.212112 -0.173215  0.119209 -1.044236    one
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804    two
2013-01-04  0.721555 -0.706771 -1.039575  0.271860  three
2013-01-05 -0.424972  0.567020  0.276232 -1.087401   four
2013-01-06 -0.673690  0.113648  -1.478427  0.524988  three

In [44]: df2[df2["E"].isin(["two""four"])]
Out[44]: 
                   A         B         C         D     E
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804   two
2013-01-05 -0.424972  0.567020  0.276232 -1.087401  four

设置新列会自动按索引对齐数据。

In [45]: s1 = pd.Series([123456], index=pd.date_range("20130102", periods=6))

In [46]: s1
Out[46]: 
2013-01-02    1
2013-01-03    2
2013-01-04    3
2013-01-05    4
2013-01-06    5
2013-01-07    6
Freq: D, dtype: int64

In [47]: df["F"] = s1

按标签设置值。

In [48]: df.at[dates[0], "A"] = 0

按位置设置值。

In [49]: df.iat[01] = 0

通过使用NumPy数组赋值进行设置。

In [50]: df.loc[:, "D"] = np.array([5] * len(df))

缺失值处理

对于NumPy数据类型, np.nan 表示缺失数据。默认情况下,它不包括在计算中。

重新索引允许您更改/添加/删除指定轴上的索引。这将返回数据的副本。

In [55]: df1 = df.reindex(index=dates[0:4], columns=list(df.columns) + ["E"])

In [56]: df1.loc[dates[0] : dates[1], "E"] = 1

In [57]: df1
Out[57]: 
                   A         B         C    D    F    E
2013-01-01  0.000000  0.000000 -1.509059  5.0  NaN  1.0
2013-01-02  1.212112 -0.173215  0.119209  5.0  1.0  1.0
2013-01-03 -0.861849 -2.104569 -0.494929  5.0  2.0  NaN
2013-01-04  0.721555 -0.706771 -1.039575  5.0  3.0  NaN

DataFrame.dropna() 删除所有缺少数据的行。

In [58]: df1.dropna(how="any")
Out[58]: 
                   A         B         C    D    F    E
2013-01-02  1.212112 -0.173215  0.119209  5.0  1.0  1.0

DataFrame.fillna() 填充缺失数据。

In [59]: df1.fillna(value=5)
Out[59]: 
                   A         B         C    D    F    E
2013-01-01  0.000000  0.000000 -1.509059  5.0  5.0  1.0
2013-01-02  1.212112 -0.173215  0.119209  5.0  1.0  1.0
2013-01-03 -0.861849 -2.104569 -0.494929  5.0  2.0  5.0
2013-01-04  0.721555 -0.706771 -1.039575  5.0  3.0  5.0

isna() 获取值为 nan 的布尔值。

In [60]: pd.isna(df1)
Out[60]: 
                A      B      C      D      F      E
2013-01-01  False  False  False  False   True  False
2013-01-02  False  False  False  False  False  False
2013-01-03  False  False  False  False  False   True
2013-01-04  False  False  False  False  False   True

数据计算处理

计算每列的平均值。

In [61]: df.mean()
Out[61]: 
A   -0.004474
B   -0.383981
C   -0.687758
D    5.000000
F    3.000000
dtype: float64

计算每行的平均值。

In [62]: df.mean(axis=1)
Out[62]: 
2013-01-01    0.872735
2013-01-02    1.431621
2013-01-03    0.707731
2013-01-04    1.395042
2013-01-05    1.883656
2013-01-06    1.592306
Freq: D, dtype: float64

使用另一个具有不同索引或列的 Series DataFrame 进行操作将使结果与索引或列标签的并集对齐。此外,pandas会自动沿指定的维度进行沿着广播,并将使用 np.nan 填充未对齐的标签。

In [63]: s = pd.Series([135, np.nan, 68], index=dates).shift(2)

In [64]: s
Out[64]: 
2013-01-01    NaN
2013-01-02    NaN
2013-01-03    1.0
2013-01-04    3.0
2013-01-05    5.0
2013-01-06    NaN
Freq: D, dtype: float64

In [65]: df.sub(s, axis="index")
Out[65]: 
                   A         B         C    D    F
2013-01-01       NaN       NaN       NaN  NaN  NaN
2013-01-02       NaN       NaN       NaN  NaN  NaN
2013-01-03 -1.861849 -3.104569 -1.494929  4.0  1.0
2013-01-04 -2.278445 -3.706771 -4.039575  2.0  0.0
2013-01-05 -5.424972 -4.432980 -4.723768  0.0 -1.0
2013-01-06       NaN       NaN       NaN  NaN  NaN

DataFrame.agg() DataFrame.transform() 应用用户定义的函数,分别减少或广播其结果。

In [66]: df.agg(lambda x: np.mean(x) * 5.6)
Out[66]: 
A    -0.025054
B    -2.150294
C    -3.851445
D    28.000000
F    16.800000
dtype: float64

In [67]: df.transform(lambda x: x * 101.2)
Out[67]: 
                     A           B           C      D      F
2013-01-01    0.000000    0.000000 -152.716721  506.0    NaN
2013-01-02  122.665737  -17.529322   12.063922  506.0  101.2
2013-01-03  -87.219115 -212.982405  -50.086843  506.0  202.4
2013-01-04   73.021382  -71.525239 -105.204988  506.0  303.6
2013-01-05  -43.007200   57.382459   27.954680  506.0  404.8
2013-01-06  -68.177398   11.501219 -149.616767  506.0  506.0

值计数。

In [68]: s = pd.Series(np.random.randint(07, size=10))

In [69]: s
Out[69]: 
0    4
1    2
2    1
3    2
4    6
5    4
6    4
7    6
8    4
9    4
dtype: int64

In [70]: s.value_counts()
Out[70]: 
4    5
2    2
6    2
1    1
Name: count, dtype: int64

Series str 属性中配备了一组字符串处理方法,可以轻松地对数组的每个元素进行操作,如下面的代码片段所示。

In [71




    
]: s = pd.Series(["A""B""C""Aaba""Baca", np.nan, "CABA""dog""cat"])

In [72]: s.str.lower()
Out[72]: 
0       a
1       b
2       c
3    aaba
4    baca
5     NaN
6    caba
7     dog
8     cat
dtype: object

数据合并

pandas提供了各种工具,可以轻松地将 Series DataFrame 对象与各种索引的集合逻辑组合在一起,并在连接/合并类型操作的情况下提供关系代数功能。

使用 concat() 按行连接pandas对象。

In [73]: df = pd.DataFrame(np.random.randn(10, 4))

In [74]: df
Out[74]:
0 1 2 3
0 -0.548702 1.467327 -1.015962 -0.483075
1 1.637550 -1.217659 -0.291519 -1.745505
2 -0.263952 0.991460 -0.919069 0.266046
3 -0.709661 1.669052 1.037882 -1.705775
4 -0.919854 -0.042379 1.247642 -0.009920
5 0.290213 0.495767 0.362949 1.548106
6 -1.131345 -0.089329 0.337863 -0.945867
7 -0.932132 1.956030 0.017587 -0.016692
8 -0.575247 0.254161 -1.143704 0.215897
9 1.193555 -0.077118 -0.408530 -0.862495

In [75]: pieces = [df[:3], df[3:7], df[7:]]

In [76]: pd.concat(pieces)
Out[76]:
0 1 2 3
0 -0.548702 1.467327 -1.015962 -0.483075
1 1.637550 -1.217659 -0.291519 -1.745505
2 -0.263952 0.991460 -0.919069 0.266046
3 -0.709661 1.669052 1.037882 -1.705775
4 -0.919854 -0.042379 1.247642 -0.009920
5 0.290213 0.495767 0.362949 1.548106
6 -1.131345 -0.089329 0.337863 -0.945867
7 -0.932132 1.956030 0.017587 -0.016692
8 -0.575247 0.254161 -1.143704 0.215897
9 1.193555 -0.077118 -0.408530 -0.862495

merge() 沿特定列启用SQL样式连接类型沿着。

In [77]: left = pd.DataFrame({"key": ["foo""foo"], "lval": [12]})

In [78]: right = pd.DataFrame({"key": ["foo""foo"], "rval": [45]})

In [79]: left
Out[79]: 
   key  lval
0  foo     1
1  foo     2

In [80]: right
Out[80]: 
   key  rval
0  foo     4
1  foo     5

In [81]: pd.merge(left, right, on="key")
Out[81]: 
   key  lval  rval
0  foo     1     4
1  foo     1     5
2  foo     2     4
3  foo     2     5

唯一密钥上的 merge()

In [82]: left = pd.DataFrame({"key": ["foo""bar"], "lval": [12]})

In [83]: right = pd.DataFrame({"key": ["foo""bar"], "rval": [45]})

In [84]: left
Out[84]: 
   key  lval
0  foo     1
1  bar     2

In [85]: right
Out[85]: 
   key  rval
0  foo     4
1  bar     5

In [86]: pd.merge(left, right, on="key")
Out[86]: 
   key  lval  rval
0  foo     1     4
1  bar     2     5

数据分组

通过"分组",我们指的是涉及以下步骤中的一个或多个的过程:

  • Splitting 根据某些标准将数据分组;
  • Applying 将函数独立地应用于每个组;
  • Combining 将结果合并到数据结构中;
In [87]: df = pd.DataFrame(
   ....:     {
   ....:         "A": ["foo""bar""foo""bar""foo""bar""foo""foo"],
   ....:         "B": ["one""one""two""three""two""two""one""three"],
   ....:         "C": np.random.randn(8),
   ....:         "D": np.random.randn(8),
   ....:     }
   ....: )
   ....: 

In [88]: df
Out[88]: 
     A      B         C         D
0  foo    one  1.346061 -1.577585
1  bar    one  1.511763  0.396823
2  foo    two  1.627081 -0.105381
3  bar  three -0.990582 -0.532532
4  foo    two -0.441652  1.453749
5  bar    two  1.211526  1.208843
6  foo    one  0.268520 -0.080952
7  foo  three  0.024580 -0.264610

通过列标签进行标记,选择列标签,然后将 DataFrameGroupBy.sum() 函数应用于结果组。

In [89]: df.groupby("A")[["C""D"]].sum()
Out[89]: 
            C         D
A                      
bar  1.732707  1.073134
foo  2.824590 -0.574779

由多列标签表单 MultiIndex 填充。

In [90]: df.groupby(["A""B"]).sum()
Out[90]: 
                  C         D
A   B                        
bar one    1.511763  0.396823
    three -0.990582 -0.532532
    two    1.211526  1.208843
foo one    1.614581 -1.658537
    three  0.024580 -0.264610
    two    1.185429  1.348368

数据重塑

In [91]: arrays = [
   ....:    ["bar""bar""baz""baz""foo""foo""qux""qux"],
   ....:    ["one""two""one""two""one""two""one""two"],
   ....: ]
   ....: 

In [92]: index = pd.MultiIndex.from_arrays(arrays, names=["first""second"])

In [93]: df = pd.DataFrame(np.random.randn(82), index=index, columns=["A""B"])

In [94]: df2 = df[:4]

In [95]: df2
Out[95]: 
                     A         B
first second                    
bar   one    -0.727965 -0.589346
      two     0.339969 -0.693205
baz   one    -0.339355  0.593616
      two     0.884345  1.591431

stack() 方法“压缩”DataFrame的列中的一个级别。

In [96]: stacked = df2.stack(future_stack=True)

In [97]: stacked
Out[97]: 
first  second   
bar    one     A   -0.727965
               B   -0.589346
       two     A    0.339969
               B   -0.693205
baz    one     A   -0.339355
               B    0.593616
       two     A    0.884345
               B    1.591431
dtype: float64

对于“堆叠”的DataFrame或Series(具有 MultiIndex 作为 index ), stack() 的逆操作是 unstack() ,默认情况下,它会取消最后一层的堆叠。

In [98]: stacked.unstack()
Out[98]: 
                     A         B
first second                    
bar   one    -0.727965 -0.589346
      two     0.339969 -0.693205
baz   one    -0.339355  0.593616
      two     0.884345  1.591431

In [99]: stacked.unstack(1)
Out[99]: 
second        one       two
first                      
bar   A -0.727965  0.339969
      B -0.589346 -0.693205
baz   A -0.339355  0.884345
      B  0.593616  1.591431

In [100]: stacked.unstack(0)
Out[100]: 
first          bar       baz
second                      
one    A -0.727965 -0.339355
       B -0.589346  0.593616
two    A  0.339969  0.884345
       B -0.693205  1.591431

数据透视表。

In [101]: df = pd.DataFrame(
   .....:     {
   .....:         "A": ["one""one""two""three"] * 3,
   .....:         "B": ["A""B""C"] * 4,
   .....:         "C": ["foo""foo""foo""bar""bar""bar"] * 2,
   .....:         "D": np.random.randn(12),
   .....:         "E": np.random.randn(12),
   .....:     }
   .....: )
   .....: 

In [102]: df
Out[102]: 
        A  B    C         D         E
0     one  A  foo -1.202872  0.047609
1     one  B  foo -1.814470 -0.136473
2     two  C  foo  1.018601 -0.561757
3   three  A  bar -0.595447 -1.623033
4     one  B  bar  1.395433  0.029399
5     one  C  bar -0.392670 -0.542108
6     two  A  foo  0.007207  0.282696
7   three  B  foo  1.928123 -0.087302
8     one  C  foo -0.055224 -1.575170
9     one  A  bar  2.395985  1.771208
10    two  B  bar  1.552825  0.816482
11  three  C  bar  0.166599  1.100230

pivot_table() 旋转 DataFrame ,指定 values index 和 `columns。

In [103]: pd.pivot_table(df, values="D", index=["A""B"], columns=["C"])
Out[103]: 
C             bar       foo
A     B                    
one   A  2.395985






请到「今天看啥」查看全文