专栏名称: 机器学习研究会
机器学习研究会是北京大学大数据与机器学习创新中心旗下的学生组织,旨在构建一个机器学习从事者交流的平台。除了及时分享领域资讯外,协会还会举办各种业界巨头/学术神牛讲座、学术大牛沙龙分享会、real data 创新竞赛等活动。
目录
相关文章推荐
量子位  ·  云计算一哥的生成式AI之道:Choice ... ·  2 天前  
宝玉xp  ·  //@Simon_阿文:划重点:Style ... ·  3 天前  
爱可可-爱生活  ·  //@爱可可-爱生活:今日开奖,欢迎参与~- ... ·  4 天前  
机器之心  ·  哗然!MIT教授NeurIPS演讲公开歧视中 ... ·  6 天前  
51好读  ›  专栏  ›  机器学习研究会

【推荐】来自谷歌Batch Normalization原作者的论文Batch Renormalization

机器学习研究会  · 公众号  · AI  · 2017-02-14 19:06

正文


点击上方“机器学习研究会”可以订阅哦
摘要
 

转自:星空下的巫师

来自谷歌Batch Normalization原作者的论文《Batch Renormalization: Towards Reducing Minibatch Dependence in  Batch-Normalized Models》在训练的时候引入两个新的变换参数r和d,降低了对minibatch的dependence,以解决BN在处理batchsize小或者样本非iid情况下所存在的问题。  

摘要:

Batch Normalization is quite effective at accelerating and improving the training of deep models. However, its effectiveness diminishes when the training minibatches are small, or do not consist of independent samples. We hypothesize that this is due to the dependence of model layer inputs on all the examples in the minibatch, and different activations being produced between training and inference. We propose Batch Renormalization, a simple and effective extension to ensure that the training and inference models generate the same outputs that depend on individual examples rather than the entire minibatch. Models trained with Batch Renormalization perform substantially better than batchnorm when training with small or non-i.i.d. minibatches. At the same time, Batch Renormalization retains the benefits of batchnorm such as insensitivity to initialization and training efficiency.


链接:

https://arxiv.org/abs/1702.03275


原文链接:

http://weibo.com/1785748853/EvrkLss7n?from=page_1005051785748853_profile&wvr=6&mod=weibotime&type=comment

“完整内容”请点击【阅读原文】

↓↓↓