专栏名称: 磁共振成像传媒
关注磁共振传媒,即时关注来自国内外最新、最快的磁共振专业资讯!
目录
相关文章推荐
新青年麻醉论坛  ·  《超声引导四肢神经阻滞标准切面解读及操作规范 ... ·  2 天前  
懒人医考  ·  开始准备社保证明!25年医师报名要求! ·  2 天前  
肿瘤资讯  ·  【4053】破茧成蝶 ... ·  5 天前  
drpei  ·  孩子咳嗽要做雾化吗? ·  6 天前  
51好读  ›  专栏  ›  磁共振成像传媒

江波:3D-T2-DRIVE联合3D TOFMRA诊断面听神经微血管压迫的意义探讨

磁共振成像传媒  · 公众号  · 医学  · 2017-04-21 22:45

正文



来源:磁共振成像传媒


潘希敏, 胡美玉, 潘碧涛, 等.3D-T2-DRIVE联合3D TOFMRA诊断面听神经微血管压迫的意义探讨. 磁共振成像, 2016, 7(11): 831-836.

 

江波,中山大学附属第一医院放射科,医学博士,副主任医师

教育背景: 1992年中山大学临床医学系六年制本科毕业;1998年~2003年攻读中山医科大学医学影像学和核医学专业研究生,20016月获硕士学位,20036月获博士学位。2007年~2008年,获国家留学基金资助在瑞典Linkoping大学CMIV学习功能MRI

专业特长: 中枢神经系统疾病临床MRI诊断和骨软组织肿瘤影像学诊断

获得奖励或荣誉称号:2000年广东柯麟医学教育基金优秀研究生奖

研究方向:脑肿瘤MRI诊断

社会兼职:欧洲放射学会会员,RSNA会员



面听神经的微血管压迫可导致面肌痉挛、耳鸣和眩晕等症状,其中以细动脉压迫神经根区最为常见,微血管减压术是目前公认的最佳治疗手段[1-2]。术前准确了解面听神经与周围血管的解剖关系、明确责任血管,对指导手术方案的制定有重要意义[3-4]。利用三维时间飞跃法MRA(3D TOFMRA) 显示神经、动脉关系来诊断脑神经的动脉压迫,已有较多研究报道,但3D TOFMRA上脑神经与背景的对比度低以致清晰显示脑神经较困难[5]。磁共振嵌驱动平衡射频重聚脉冲三维快速自旋回波序列(3D T2-weighted TSE with driven equilibrium radio frequency resetpulse,3D-T2-DRIVE),具有高对比度显示脑神经的优势[6-8]。联合应用3D-T2-DRIVE和3D TOFMRA,可实现同时高分辨显示脑神经和细动脉的效果,此类研究少见报道。本研究通过3D-T2-DRIVE和3D TOFMRA的等体素、各向同性成像,比较3D-T2-DRIVE、3D TOFMRA及3D-T2-DRIVE+3D TOFMRA三种方法检测面听神经微血管压迫的效能,以探讨3D-T2-DRIVE联合3D TOFMRA在面听神经微血管压迫性病变诊断中的实际作用。

 

1 材料与方法

1.1 病例资料

收集我院2009年1月至2015年6月间单侧面肌痉挛或不明原因耳鸣、眩晕患者的MRI与相关临床资料。所有患者中,19例基底动脉瘤、23例椎动脉重度迂曲扩张及11例桥小脑角区占位性病变被排除,余下36例纳入研究。男性11例,女性25例,年龄13~71岁,结果均经手术或临床追踪随访证实。

 

1.2 扫描及图像重组方法

采用PhilipsAchieva Nova Dual 1.5 T超导磁共振成像系统,相控阵头部8通道线圈。患者仰卧,头先进,以内听道为中心做横轴面扫描,于同一容积内依次行3D-T2-DRIVE与3D TOFMRA序列扫描。3D-T2-DRIVE 序列扫描参数: FOV 130 mm×130 mm,层面数60,层厚0.7mm,各向同性体素0.7×0.7×0.7,重建矩阵512×512,TR 1500 ms,TE 250 ms,反转角90°,平均采集次数为2次,扫描时间6min 15 s。3D TOFMRA序列扫描参数:FOV130 mm×130 mm, 层面数60,层厚0.7 mm,各向同性体素0.7×0.7×0.7,重建矩阵512×512,TR 25 ms,TE 4.6 ms,反转角(FA) 30°,平均采集次数2,扫描时间3 min 28 s。将原始图像发送至MR工作站行T2-3D-DRIVE与3D TOFMRA序列图像的叠加、最大信号强度投影(MIP)和多平面重组(MPR)处理。MPR沿面听神经方向行斜冠状面重组和垂直于面听神经行斜矢状面重组,获取任一观察层面T2-3D-DRIVE与3D TOFMRA的2组序列图像。

 

1.3 图像诊断质量比较

以显示患侧面听神经、责任血管(含细动脉、细静脉)为目标,根据轴位及MPR、MIP图的信噪比、对比度及辨识度,对3D-T2-DRIVE (A组)、3D TOFMRA(B组)及3D-T2-DRIVE+3D TOFMRA (C组) 三种方法进行综合评估并评分。评分标准:不能显示0分;显示模糊不能诊断1分;显示良好能基本满足诊断需要2分;显示非常清晰能满足诊断需要3分。神经血管关系的判断:选取3组中得分最高者,在清晰显示相关神经基础上,参考文献中的等级分法[9],确定是压迫移位、接触或是无接触,其中压迫移位、接触判为责任血管,无接触则判为非责任血管。由2名高年资影像诊断主治医师采用双盲法读片。

 

1.4 统计学分析

应用SPSS 17.0软件进行:(1) Kruskal-Wallis H检验统计分析,计算各组得分的秩次和平均秩次(均秩),依次比较在显示面听神经和责任血管方面,三种方法之间均秩的差异,以P<0.01为差异有统计学意义。(2) 2名读片者评分结果的Kappa一致性检验。一致性水平定义如下:K<0.4,一致性较差;0.4<K<0.6,一致性一般;0.6<K<0.8,一致性良好;0.8<K<1.0,一致性很好。

 

2 结果

三种方法在显示面听神经方面的得分见表 1。A组均秩69.53,B组均秩19.64,C组均秩74.33,三组间差异有统计学意义(H=86.02,P=0.0000)。组间分析,A、C组间差异无统计学意义(H=2.28,P=0.1313);A、B组间(H=53.18,P=0.0000)及B、C组间差异有统计学意义(H=58.78,P=0.0000)。结果提示,在显示面听神经方面,3D-T2-DRIVE+3DTOFMRA、T2-3D-DRIVE优于3D TOFMRA。显示面听神经方面,2名读片者的评分分别为2.35±0.25和2.48±0.28,其一致性很好(K=0.85)。

三种方法在显示责任血管方面的得分见表 2。A组均秩38.21,B组均秩36.29,C组均秩89,三组间差异有统计学意义(H=11.045,P=0.0000)。组间分析,A、B组间(H=0.0083,P=0.9274)差异无统计学意义,A、C组间(H=54.12,P=0.0000)及B、C组间(H=62.42,P=0.0000)差异有统计学意义。结果提示,在显示责任血管方面,3D-T2-DRIVE+3D TOFMRA优于T2-3D-DRIVE和3DTOFMRA。显示责任血管方面,2名读片者的评分分别为1.79±0.15和1.88±0.21,其一致性很好(K=0.91)。

由表1、2可知,在显示面听神经和责任血管方面,3D-T2-DRIVE+3D TOFMRA 效果最佳。根据3D-T2-DRIVE+3D TOFMRA的轴位及MPR、MIP图像(图1~9),36例中检出面听神经根细动脉压迫阳性32例,阴性4例,均经手术或临床追踪证实。阳性32例中,面神经受压11例,听神经受压13例,面、听神经同时受压8例;责任血管源自小脑上动脉19例,小脑前下动脉8例及小脑后下动脉9例,未见责任静脉。阳性患者均经乙状窦后入路膜片隔离责任动脉与受累神经,术中所见证实了MRI所示面听神经根性细动脉压迫,未见假阳性或假阴性病例。术后耳鸣、眩晕、面肌抽搐症状消失。阴性4例,随访2~4年,症状均逐渐消失。3D-T2-DRIVE+3D TOFMRA 诊断面听神经细动脉压迫的灵敏度100%,特异度100%。




 

3 讨论

DRIVE是由-90°脉冲、梯度重聚焦脉冲和毁损梯度组成的一列脉冲。在回波信号的峰值-90°脉冲激发,以极短时间绕过T1弛豫直接将全部横向磁化回复至纵向磁化,其效应是显著增强组织的T2信号,对长T1、长T2组织的作用尤为明显[6]。3D-T2-DRIVE是在三维快速自旋回波中加入DRIVE 的整合序列,一方面大大缩短扫描时间、减少流动伪影,另一方面显著增强图像的T2信号与对比度,因此特别适用于桥小脑角区的神经微血管形态学观察[7-8]。3D-T2-DRIVE图上,脑神经、中小动脉和流速快的细动脉、细静脉表现为极低信号, 脑组织为低信号而脑脊液(CSF)呈显著高信号,细血管、脑神经与脑组织及CSF三者形成强对比而易于辨识。对于同样表现为低信号的神经与小血管,在二者排列、走行无序情况下,其鉴别比较困难。

3D TOFMRA是利用血流的流入增强效应原理、立体展示成像容积内血流信号的血管造影技术,根据血流方向的选择可分别产生动脉、静脉或动静脉混合影像,常用于显示血流较快的动脉系统[5]。由于静态组织信号被饱和抑制,3D TOFMRA上血管与周围组织间的信噪比较高。桥小脑角区3D TOFMRA上,细动脉呈条状或圆形高信号影,脑神经呈等信号、CSF呈略低信号,动脉与背景产生强对比得以凸显;而脑神经与CSF信号的弱对比,在脑池CSF背景上不易辨识脑神经[5,9-11]。在显示桥小脑角区的神经血管形态方面,3D-T2-DRIVE和3D TOFMRA各有长处与不足。因此,同时观察、分析两组图像可望实现优势互补,达到同时高对比度、高信噪比展示脑神经及其周围细动脉的效果。

本组病例3种方法评价效果的比较,证实了上述设想。在观察面听神经和判断责任血管效能方面,3D-T2-DRIVE、3D TOFMRA二者联合均明显优于单一的3D-T2-DRIVE或3D TOFMRA序列。本研究中,3D-T2-DRIVE和3D TOFMRA被设定相同的方位、层厚、层数和体素扫描,保证了二者所采集到的每一个层面位置都是一致的,能进行轴位图及任一方位之MPR图的无差异性比对观察。同时,3D-T2-DRIVE各向同性扫描技术,使其MPR图像同样拥有高分辨力,清晰显示脑神经和细血管的边界与轮廓,展现脑神经与邻近细血管的伴行、斜穿、骑跨等关系,并进一步判断脑神经与细血管的接触、压迫性改变。

桥小脑角区空间狭小,面神经和蜗、前庭神经前后上下紧邻,且此处行程迂曲及走行变异的细动脉常常贴着桥脑边缘发出,3D-T2-DRIVE上脑神经与细动脉的鉴别有一定困难[12-13]。本组中,4例血管与面听神经均表现为细条状同一方向的低信号影,结合对应3D TOFMRA上高信号动脉穿过,神经动脉得以区分。在辨识责任动脉方面,3D-T2-DRIVE和3D TOFMRA的MPR有着独特作用,通过重组方位的细微旋转及层厚的调整,可完整勾画出责任动脉的穿行及其与面神经、蜗前庭神经的空间毗邻关系,但这须建立在3D TOFMRA对可疑细动脉的清晰展示基础之上。责任动脉为末梢动脉,其信号相对于大动脉较弱,在大范围的MIP中常常不被显示,此时需行局部MIP处理。确定责任动脉起源,需综合3D TOFMRA轴位原始图上对细动脉的追踪观察及局部MIP图的立体显示。正是基于优势序列的联合,本研究中3D-T2-DRIVE+3D TOFMRA诊断面听神经细动脉压迫的灵敏度和特异度均为100%,其结果与已报道的诊断灵敏度97%以上、特异度100%的DRIVE研究非常接近[7-8],说明DRIVE诊断方法是稳定可靠且是高效的。

有关脑神经血管压迫的MRI诊断研究,已有多种序列和方法报道。代表性的有GE的三维稳态快速成像(3D-FIESTA)[9-11,14],Siemens的三维T2可变反转角快速自旋回波成像(3D-SPACE)和稳态构成干扰成像(3D-CISS)等[15],常常与容积内插法脑部成像(VIBE)、3D TOFMRA等血管成像序列联合应用,诊断灵敏度83%~88%,特异度75%~96%[5,14]。3D-FIESTA和3D-CISS,都是采用稳态进动成像技术,对比度取决于组织的T2/T1比值,具有突显长T2液体信号的特点,其椎基动脉及分支呈高信号而不易与CSF区分,干扰对神经血管关系的观察。3D-T2-DRIVE和3D-SPACE均有三维高对比度分辨的优势,其快速自旋回波T2成像上脑内血管均呈流空低信号,有利于桥小脑角区神经血管关系的判断。VIBE和3D TOFMRA采用扰相梯度重聚序列[5,15],动脉血流呈高信号,但VIBE上静脉也表现为高信号,且动静脉与CSF、脑神经的对比度不如3D TOFMRA。因此,3D TOFMRA常常与3D-FIESTA、3D-SPACE或3D-T2-DRIVE合并使用。此类双序列联合应用研究中,采用各向同性及等体素参数扫描的,未见文献报道。

本研究不足之处为病例中没有责任静脉,这可能跟我们的样本不够大有关。另外,有临床症状、被证实的MRI诊断阴性病例较少,未能做诊断有效性与实用性分析。责任静脉尽管较少,且诊断较责任动脉困难,但术前的诊断仍有积极意义[16]。除对比增强MRA外,VIBE也能直接显示高信号的细静脉,有一定互补作用[15]。综上,本研究采用3D-T2-DRIVE联合3D TOFMRA的途径,充分发挥两者之长,证实并阐明了这一方法在面听神经微血管压迫性病变诊断中的重要应用意义。各向同性与等体素扫描,是高质量图像的保证,而两组图像的整合观察及多方位、不同层厚的MPR与MIP后处理,在明确神经血管关系中起着核心作用。脑神经微血管压迫性疾病的MRI诊断仍面临诸多新挑战,有待广大学者继续深入研究。

 

参考文献 [References]

[1] Lu AY, Yeung JT, Gerrard JL, et al. Hemifacial Spasmand Neurovascular Compression. Scien World J, 2014, 2014(5): 741-747.

[2] Soriano-Baron H, Vales-Hidalgo O, Arvizu-Saldana E,et al. Hemifacial spasm: 20-year surgical experience, lesson learned. Surg NeurolInt, 2015, 6(1): 83-96.

[3] Mikami T, Minamida Y, Akiyama Y, et al. Microvasculardecompression for hemifacial spasm associated with the vertebral artery.Neurosurg Rev, 2013, 36(2): 303-308.

[4] Zhao YH, Cai QG, Weng W, et al. Ten cases report ofvascular compressive syndrome caused by the facial, acoustic nerves. J Clin OtorhinolaryngolHead Neck Surg, 2014, 28(7): 440-442.

赵永宏, 蔡其刚, 翁维, 等. 面听神经根血管压迫综合症10例分析.临床耳鼻咽喉颅底外科杂志, 2014, 28(7): 440-442.

[5] Cai J, Xin ZX, Zhang YQ, et al. Diagnostic value of3D time-offlight MRA in trigeminal neuralgia. J Clin Neurosci, 2015, 22(8): 1343-1348.

[6] Ciftci E, Anik Y, Arslan A, et al. Driven equilibrium(drive) MR imaging of the cranial nerves Ⅴ-Ⅷ: comparison with the T2-weighted 3D TSE sequence. Eur J Radiol,2004, 51(3): 234-240.

[7] Leal PR, Hermier M, Souza MA, et al. Visualization ofvascular compression of the trigeminal nerve with high-resolution 3T MRI: aprospective study comparing preoperative imaging analysis to surgical findingsin 40 consecutive patients who underwent microvascular decompression fortrigeminal neuralgia. Neurosurgery, 2011, 69(1): 15-25.

[8] Yang LX, Jia WX, He L, et al. Evaluation of 3D-TSEwith Drive in the diagnosis of hemifacial spasm. J Xinjiang Med University,2008, 31(4): 374-376.

杨利霞, 贾文霄, 何乐, 等. 3D-TSE序列结合DRIVE诊断面肌痉挛病因的价值. 新疆医科大学学报, 2008, 31(4): 374-376.

[9] Li CD, Zhu XJ, Sun SL, et al. Effectiveness ofapplication of 3D-FIESTA and 3D-TOF-MRA in pre-operative assessment of hemifacialspasm. Chin Med Devices, 2015, 30(10): 67-69.

李传东, 朱先进, 孙士龙, 等. 3D-FIESTA和3D-TOF-MRA扫描对面肌痉挛的术前评估价值. 中国医疗设备, 2015, 30(10): 67-69.

[10] Zhao Z, Chen LP, Wang XH, et al. The Value of MRI 3DFIESTA combining 3D TOF MRA sequence in evaluation of the auditory nervevascular compression syndrome. J Chin Clin Med Imaging, 2012, 23(1): 67-69.

赵钊, 陈立鹏, 王秀河, 等. 磁共振3D FIESTA结合3D TOF MRA序列对诊断听神经血管压迫综合症的价值. 中国临床医学影像杂志, 2012, 23(1): 67-69.

[11] Jin J, Tang XL, Xiang H, et al. Evaluation of 3D-TOFand 3D-FIESTA combined with MPR in microvascular decompression for trigeminalneuralgia by 3.0 T MRI system. Chin J Magn Reson Imaging, 2015, 6(4): 277-282.

金军, 汤小俐, 香辉, 等. 3.0 T MRI 3DTOF序列联合3D-FIESTA序列结合多平面重建在三叉神经微血管减压术术前评估中的应用价值. 磁共振成像, 2015, 6(4): 277-282.

[12] QI J, XIA S. The application and research status ofMRI in different ear diseases. Chin J Magn Reson Imaging, 2014, 5(Suppl):15-19.

祁吉, 夏爽. 磁共振成像在耳部疾病应用及进展. 磁共振成像, 2014, 5(增刊):15-19.

[13] Chen LJ, Chen SX, Ma N, et al. Research of 3.0 T MRIvirtual endoscopy reconstruction in hemifacial spasm. Chin J Magn Reson Imaging,2014, 5(3):189-192.

陈利军, 陈士新, 马宁, 等. 3.0 T MRI仿真内窥镜重建技术在面肌痉挛中的应用研究. 磁共振成像, 2014, 5(3): 189-192.

[14] Chen LJ, Chen SX, Sun ZD, et al. Application valueof doubly excited Balance-SSFP sequence curvature plane reconstruction in vascularcompressive trigeminal neuralgia and hemifacial spasm. Chin J Magn ResonImaging, 2015, 6(10): 744-749.

陈利军, 陈士新, 孙泽栋, 等. 双激发平衡式稳态自由进动序列曲面重建在血管压迫性三叉神经痛及面肌痉挛的应用价值. 磁共振成像, 2015, 6(10): 744-749.

[15] Li CX, Fu YG, Zhou X, et al. The application valueof MR sequence in cranial neurovascular imaging. Chin J Magn Reson Imaging, 2016,7(3):180-184.

李春星, 符益纲, 周笑, 等. 磁共振序列在颅神经血管成像中的应用价值. 磁共振成像, 2016, 7(3): 180-184.

[16] Wang X, Thirumala PD, Shah A, et al. The role ofvein in microvascular decompression for hemifacial spasm: a clinical analysisof 15 cases. Neurol Res, 2013, 35(4): 389-394.