核心基础库
-
示例代码:
import numpy as np
# 创建数组
arr = np.array([1, 2, 3, 4, 5])
matrix = np.array([[1, 2, 3], [4, 5, 6]])
# 基本运算
print(arr * 2) # [2 4 6 8 10]
print(matrix.shape) # (2, 3)
# 数学运算
print(np.mean(arr)) # 3.0
print(np.sum(matrix)) # 21
-
-
-
提供 DataFrame 和 Series 等数据结构
-
-
-
支持多种文件格式的读写 (CSV、Excel 等)
示例代码:
import pandas as pd
# 创建 DataFrame
df = pd.DataFrame({
'姓名': ['张三', '李四', '王五'],
'年龄': [25, 30, 35],
'城市': ['北京', '上海', '广州']
})
# 基本操作
print(df.head())
print(df['年龄'].mean()) # 30.0
# 数据筛选
print(df[df['年龄'] > 30])
-
示例代码:
import matplotlib.pyplot as plt
import numpy as np
# 创建简单折线图
x = np.linspace(0, 10, 100)
y = np.sin(x)
plt.plot(x, y)
plt.title('正弦波')
plt.xlabel('x')
plt.ylabel('sin(x)')
plt.grid(True)
plt.show()
科学计算扩展库
-
示例代码:
from scipy import optimize
import numpy as np
# 定义要优化的函数
def f(x):
return (x[0] - 1)**2 + (x[1] - 2)**2
# 最小化函数
result = optimize.minimize(f, [0, 0])
print(result.x) # [1. 2.]
-
示例代码:
from sympy import symbols, solve, diff
# 定义符号变量
x, y = symbols('x y')
# 解方程
expr = x**2 - 4
solution = solve(expr, x)
print(solution) # [-2, 2]
# 求导
derivative = diff(x**3 + x**2, x)
print(derivative) # 3*x**2 + 2*x
统计和机器学习
-
示例代码:
import pymc as pm
import numpy as np
# 简单的贝叶斯模型
with pm.Model() as model:
# 先验分布
mu = pm.Normal('mu', mu=0, sigma=1)
# 似然函数
obs = pm.Normal('obs', mu=mu, sigma=1, observed=np.random.randn(100))
# 进行推断
trace = pm.sample(1000)
-
示例代码:
import cmdstanpy
# Stan 模型代码
stan_code = """
data {
int N;
vector[N] y;
}
parameters {
real mu;
real sigma;
}
model {
y ~ normal(mu, sigma);
}
"""
# 编译和运行模型
model = cmdstanpy.CmdStanModel(model_code=stan_code)
特定领域工具
-
示例代码:
from astropy.coordinates import SkyCoord
import astropy.units as u
# 创建天体坐标
coord = SkyCoord(ra=10.68458*u.degree, dec=41.26917*u.degree, frame='icrs')
print(coord.to_string('hmsdms'))
# 坐标转换
galactic = coord.galactic
print(f"银道坐标: {galactic.l.deg:.2f}°, {galactic.b.deg:.2f}°")
-
示例代码:
from HARK.ConsumptionSaving.ConsIndShockModel import IndShockConsumerType
# 创建消费者模型
consumer = IndShockConsumerType()
# 解决消费者问题
consumer.solve()
# 模拟消费者行为
consumer.simulate()
交互式计算环境
-
示例代码:
# 在 Jupyter Notebook 中运行
from IPython.display import display, Math, Latex
# 显示数学公式
display(Math(r'F(k) = \int_{-\infty}^{\infty} f(x) e^{2\pi i k x} dx'))
# 魔法命令
%time range(1000000) # 测量代码执行时间
-
示例代码:
# nteract 中的数据可视化
import altair as alt
import pandas as