专栏名称: COMSOL 多物理场仿真技术
致力于介绍COMSOL多物理场仿真技术,涉及声-结构、MEMS、数学等模块,教学sci文献案例,讲解仿真要点以及定期分享最新的声学超材料文献
目录
相关文章推荐
环球时报  ·  场上发生了什么?林孝埈回应 ·  昨天  
澎湃新闻  ·  免签入境新政+1,今起执行! ·  昨天  
新华社  ·  夜读|五种心态,成就更好的自己 ·  3 天前  
人民日报  ·  【夜读】珍惜那个和你聊得来的人 ·  3 天前  
51好读  ›  专栏  ›  COMSOL 多物理场仿真技术

Nature | 声学超材料设计新纪元:COMSOL解锁未来科技奥秘!

COMSOL 多物理场仿真技术  · 公众号  ·  · 2024-07-22 08:50

正文

PART ONE

近年来,声学超材料作为材料科学领域的一颗璀璨新星,正以其独特的声波调控能力引领着声学技术的新一轮革命。这些通过精密设计的非均匀材料结构,不仅打破了传统声学材料的性能界限,还展现出了如负折射、超透镜等非凡的声学特性,为多个领域带来了前所未有的应用前景。然而,传统设计方法在应对复杂多变的声学需求时显得力不从心,设计周期长、成本高且难以获得全局最优解。


正是在这样的背景下,深度学习作为人工智能领域的杰出代表,被引入到了声学超材料的逆向设计之中。凭借其强大的数据处理和模式识别能力,深度学习能够迅速从海量数据中提取关键特征,并构建出精准预测声学超材料性能的模型。这一技术的引入,不仅极大地缩短了设计周期,降低了设计成本,还使得声学超材料的设计更加灵活多样,能够满足更多元化的应用需求。


展望未来,深度学习在声学超材料领域的应用前景十分广阔。随着算法的不断优化和计算能力的提升,深度学习模型将更加精确、高效和稳定,为声学超材料的设计提供更强有力的支持。同时,跨学科的合作与技术创新也将为声学超材料的研究注入新的活力,推动其在医学成像、航天航空、新能源汽车等多个领域的广泛应用。当然,我们也需要正视深度学习在声学超材料研究中面临的挑战,如数据处理的复杂性、模型稳定性的提升等,通过持续的研究和探索来克服这些难题。总之,深度学习声学超材料的研究正处于一个充满机遇与挑战的崭新阶段,我们有理由相信,在不久的将来,这一领域将迎来更加辉煌的成就。

讲师介绍

主讲老师来自中国TOP高校,在国内顶尖教授组中从事人工智能声学超材料设计研究,光学声学材料物理方向,在深度学习辅助的声学超材料设计研究领域深耕多年,具有丰富的经验和扎实的基础。以第一作者或通讯作者在AM,AFM、 ACS nano 、JMR,ES等行业顶级期刊发表论文10篇,参与过多项国家级项目,担任JMR、APl等多个杂志的审稿人


学习目标

1.学习声学超材料的基本概念与理论。

2.掌握声学超材料的结构设计与分类。

3.了解声学超材料的制造方法。

4.探讨声学超材料 的模拟与深度学习结合

5.分析声学超材料研究的前沿进展与未来发展方向。


深度学习声学超材料设计专题

第一天:声学超材料的基本理论

1.1 声学超材料概述

1.1定义与特点

1.2研究背景与发展历程

2. 声波方程与晶格理论

2.1声波方程

2.2晶格与能带理论

3.有效介质理论与斯涅尔定律

3.1有效介质理论

3.2通用斯涅尔定律

4. 案例分析

4.1经典声学超材料案例

第二天:声学超材料的结构设计

1. 声学超材料的分类

1.1基于结构特征的分类

1.2基于声波响应的分类

2. 常见声学超材料结构

2.1局域共振型

2.2带隙型

2.3负折射率型

3. 结构设计方法

3.1设计原则与方法

3.2计算模拟与优化

4. 案例分析

4.1典型结构设计案例

第三天:声学超材料的仿真模拟

1.1  仿真软件介绍:COMSOL Multiphysics

1.1建立声学超材料的三维模型

1.2声固耦合模块的使用

1.3设置材料属性和边界条件

1.4网格划分与求解设置

1.5结果分析与可视化

2. 案例分析

2.1基于COMSOL的声学超材料仿真案例

2.2低频隔声特性仿真

2.3声波透射与反射仿真

第四天:深度学习基础

第一部分:基础概率

L1-basic probability.pdf

1.1概率基础

1.2条件概率与贝叶斯定理

第二部分:模型拟合与贝叶斯方法

L2-FittingSimpleModels.pdf

2.1简单模型的拟合方法

2.2线性回归与逻辑回归

L3-BayesianNetworks.pdf

3.1贝叶斯网络基础

3.2条件独立性与因果推断

L4-MarkovRandomFields.pdf

4.1马尔可夫随机场

4.2应用与推断

第三部分:推断与优化

L5-VariableElimination_BeliefPropagation.pdf

5.1变量消除与信念传播

5.2推断算法

L6-FactorGraph_JunctionTree.pdf

6.1因子图与连接树

6.2高效推断方法

L7-MixtureModels_EM.pdf

7.1混合模型与期望最大化算法(EM)

7.2应用案例

第四部分:时间序列与采样方法

L8-HMM.pdf

8.1隐马尔可夫模型(HMM)

8.2应用与推断

L9-MCMC.pdf

9.1马尔可夫链蒙特卡罗方法(MCMC)

9.2采样与推断

第五部分:高级主题

L10-VariationalBayes.pdf

10.1变分贝叶斯方法

10.2应用与优化

L11-PlanningAndInference.pdf

11.1规划与推断

11.2决策过程中的应用

L12-GPs.pdf

12.1高斯过程(GPs)

12.2应用与优化

第五天:深度学习在声学超材料结构设计方面的应用

1.1 深度学习基础

1.2深度学习概述

1.3定义与特点

1.4发展历程

1.5神经网络基础

1.6神经元与层

1.7前向传播与反向传播

1.8常见深度学习模型

1.9卷积神经网络(CNN)

1.10循环神经网络(RNN)

1.11生成对抗网络(GAN)

2. 深度学习在声学超材料中的应用

2.1深度学习在声学超材料设计中的应用

2.2结构优化

2.3性能预测

3. 深度学习在声学超材料制造中的应用

3.1制造过程监控

3.2缺陷检测

4.深度学习在声学超材料应用中的案例分析

4.1噪声控制

4.2声学隐身




以数据为载体的计算机革命为弹性波超材料设计带来了前所未有的创新方法。通过建立函数替代模型,基于人工神经网络架构的深度学习算法在超材料设计过程中展现出了显著的快速性与准确性,成功弥补了传统设计方法(如试错法、与数值分析结合的优化算法等)的不足。

由于超材料特征参数与其性质(如带隙、能带曲线、传递系数等)存在映射规律,无论这个规律有多复杂,深度学习模型都可以模拟。所以,一般而言,只要提供足够的数据,并构建合理的深度学习模型,超材料的前向预测就能够实现。基于深度学习的超材料参数设计方法也已经取得了较大的发展,出现了如MLP、MLP+GA和TNN等优秀的模型,并且大量研究成果表明了这几类模型的高效性。此外,拓扑设计具有设计域广的优势,但是由于拓扑构型的高维性和离散性,超材料拓扑设计的难度大大增加。为此,学者们开发了基于CGAN、CVAE以及VAE-based等的深度学习模型,以降低拓扑设计难度,实现更广域的超材料设计。

深度学习在助力超材料逆向设计创新方面,展现出了显著的优势和潜力。具体体现为:快速精确的设计能力、强大的数据处理能力、设计灵活性和可扩展性、促进跨学科融合。深度学习模型可以根据特定的需求或标准快速生成新的设计。这种灵活性使得超材料设计能够满足不同领域和应用的特定需求。深度学习逆向设计不仅依赖于实验数据,还结合了弹性波理论、固体物理学等理论支持。这使得设计方案具有更强的科学性和理论深度。超材料在航空航天、生物医学、土木工程等领域具有广泛应用前景。深度学习逆向设计可以针对不同领域的需求,快速生成满足性能要求的超材料设计方案,推动了这些领域的技术进步和创新发展。

综上所述,基于深度学习的超材料研究已经取得了较大的进展,形成了较为完备的体系。深度学习在超材料逆向设计中具有快速精确的设计能力、高效的数据处理能力、强大的泛化能力、物理洞察的提供以及灵活性和可扩展性等优势。这些优势使得深度学习成为超材料逆向设计中不可或缺的工具和方法。


讲师介绍

主讲老师来自国家985重点高校,固体力学专业,在深度学习辅助的弹性波超材料逆向设计研究领域深耕多年,具有丰富的经验和扎实的基础。以第一作者或通讯作者在CMAME、IJMS、ES等行业顶级期刊发表论文8篇以及其它国际知名期刊7篇,共计15篇,参编英文书籍1部,参与过多项国家级项目,担任JSV、IJAM和EML等多个杂志的审稿人。


课程目标

1. 学习弹性波超材料的基本概念与计算方法

2. 学习深度学习算法以及基于Tensorflow框架的模型搭建

3. 学习深度学习在弹性波超材料领域的研究现状

4. 学习基于COMSOL with Matlab的弹性波超材料数据集批量自动生成方法 (分享课程涉及的所有数据集及代码)

5. 学习基于深度学习的弹性波超材料正向预测、参数设计与拓扑设计的原理以及实现方式 (分享课程涉及的所有代码)

深度学习超材料逆向设计专题

01

第一天

弹性波超材料与深度学习的基本理论

1.1 弹性波超材料

1.1.1 弹性波超材料概念

1.1.2 超材料应用前景

1.1.3 计算方法

1.1.4 带隙机理

1.1.5 COMSOL商用有限元软件安装

1.1.6 案例1:基于传递矩阵法的一维周期超材能带曲线计算(包含实操)

1.1.7 案例2:基于有限元的二维周期超材料能带曲线计算(包含实操)

1.1.8 案例3:基于有限元的二维周期超材料频域与时域响应计算(包含实操)

2.1 深度学习

2.1.1 概念与原理

2.1.2 常见的深度学习模型(MLP, CNN, RNN)

2.1.3 Tensorflow深度学习框架安装与演练(包含实操)

2.1.4 数字图片数据集下载(包含实操)

2.1.5 数字识别深度学习模型搭建(包含实操)



02

第二天

数据集批量自动生成方法

2.1 COMSOL with Matlab介绍

2.2 如何获取用于弹性波超材料计算的基础Matlab代码(包含实操)

2.2.1 COMSOL有限元模型以Matlab代码表示

2.2.2 Matlab读取并修改COMSOL有限元模型

2.3 参数变量控制的数据批量自动生成方法与Matlab代码(包含实操)

2.3.1 参数变量特性与定义规则

2.3.2 Matlab更改COMSOL有限元模型中的几何和材料参数

2.4 拓扑变量控制的数据批量自动生成方法与Matlab代码(包含实操)

2.4.1 拓扑构型定义与范围选取

2.4.2 Matlab定义COMSOL有限元模型的拓扑结构

2.5 数据整合方法与Python代码(包含实操)

03

第三天

正向预测

3.1 正向预测研究现状

3.2 正向预测深度学习模型及其原理

3.2.1 SVM

3.2.2 MLP

3.2.3 CNN

3.3 用于正向预测的数据集介绍

3.3.1 一维周期超材料的参数变量数据集

3.3.2 二维周期超材料的拓扑变量数据集

3.4 基于MLP的一维周期超材料带隙预测与代码讲解(包含实操)

3.4.1 基于Python和Tensorflow的MLP模型构建

3.4.2 训练与验证

3.4.3 基于R2的带隙预测精度测试评估

3.5 基于CNN的二维周期超材料能带曲线预测与代码讲解(包含实操)

3.5.1 基于Python和Tensorflow的CNN模型构建

3.5.2 训练、验证与测试

3.5.3 真实值与测试值对比图的批量生成



04

第四天

参数设计

4.1 参数设计研究现状

4.2 用于参数设计的深度学习模型及其原理

4.2.1 MLP

4.2.2 MLP+GA

4.2.3 强化学习

4.2.4 TNN

4.3 用于参数设计的数据集介绍

4.4 基于TNN的一维周期超材料参数设计与代码讲解(包含实操)

4.4.1 TNN模型的搭建方式

4.4.2 设计参数的批量保存与验证

4.5 参数设计结果的分析与讨论(包含实操)

4.5.1 设计精度的评估方式及其代码

4.5.2 设计的非唯一性



05

第五天







请到「今天看啥」查看全文