选自 Science Robotics, 作者: Jemin Hwangbo等, 机器之心编译。
深度强化学习开发出的机器人模型通常很难应用到真实环境中,因此机器人开发中鲜少使用该技术。然而这已经板上钉钉了吗?在两天前 引发人工智能界关注的 ANYmal 机器人 中,其机动性和适应性看起来丝毫不逊色于波士顿动力。其相关论文近期登上了 Science 子刊《Science Robotics》,并且明确指出使用了 深度强化学习 技术。基于 AI 技术的成功应用,ANYmal 在数据驱动的开发上或许会更有优势。
-
论文: Learning agile and dynamic motor skills for legged robots
摘要 :足式机器人是机器人学中最具挑战性的主题之一。动物动态、敏捷的动作是无法用现有人为方法模仿的。一种引人注目的方法是强化学习,它只需要极少的手工设计,能够促进控制策略的自然演化。然而,截至目前,足式机器人领域的强化学习研究还主要局限于模仿,只有少数相对简单的例子被部署到真实环境系统中。主要原因在于,使用真实的机器人(尤其是使用带有动态平衡系统的真实机器人)进行训练既复杂又昂贵。本文介绍了一种可以在模拟中训练神经网络策略并将其迁移到当前最先进足式机器人系统中的方法,因此利用了快速、自动化、成本合算的数据生成方案。该方法被应用到 ANYmal 机器人中,这是一款中型犬大小的四足复杂机器人系统。利用在模拟中训练的策略,ANYmal 获得了之前方法无法实现的运动技能:它能精确、高效地服从高水平身体速度指令,奔跑速度比之前的机器人更快,甚至在复杂的环境中还能跌倒后爬起来。
结果
基于命令的运动
高速运动
跌倒后的恢复
材料和方法
这一部分会详细描述模拟环境、训练过程和在物理环境中的部署。图 5 是训练方法概览。训练过程如下:刚体模拟器会根据关节扭矩和当前状态输出机器人的下一个状态。关节速度和位置误差会被缓存在有限时间窗口的关节状态历史中。由带两个隐藏层的 MLP 实现的控制策略会将当前状态和关节状态历史的观察结果映射为关节位置目标。最后,致动器网络会将关节状态历史和关节位置目标映射为 12 个关节扭矩值,然后进入下一个训练循环。
建模刚体动力机制
为了在合理时间内有效训练复杂的策略,并将其迁移到现实世界,我们需要一种又快又准确的模拟平台。开发行走机器人的最大挑战之一是非连续接触的动力机制建模。为此,研究者使用了之前工作中开发出的刚体接触求解器 [41]。这个接触求解器使用了一个完全遵循库伦摩擦锥约束的硬接触模型。这种建模技术可以准确地捕获一系列刚体和环境进行硬接触时的真实动力机制。该求解器能准确而快速地在台式计算机上每秒生成模拟四足动物的 90 万个时间步。
连接的惯性是从 CAD 模型估计出来的。研究者预期估计会达到 20% 的误差因为没有建模布线和电子器件。为了考虑这些建模不确定性,研究者通过随机采样惯性训练了 30 种不同的 ANYmal 模型来使得策略更加稳健。质心位置、连接的质量和关节位置分别通过添加从 U(−2, 2) cm、U(−15, 15)%、 U(−2, 2) cm 中采样的噪声进行随机化。
建模致动器
强化学习
研究者展示了离散时间中的控制问题。在每个时间步 t,智能体获取观测结果 o_t ∈O,执行动作 a_t ∈A,获取标量奖励 r_t ∈ ℛ。研究者所指奖励和成本是可以互换的,因为成本就是负的奖励。研究者用 O_t = 〈o_t, o_t − 1, …, o_t − h〉表示近期观测结果的元组。智能体根据随机策略 π(a_t|O_t) 选择动作,该随机策略是基于近期观测结果的动作分布。其目的在于找到在无穷水平中使折扣奖励总和最大化的策略: