Day 1: 固体力学复习
第一天:弹性力学复习
课程目标:
复习基础弹性力学,穿插学习大变形下的新定义
复习适定的弹性问题 (well-posed problem)
学习构建强弱形式并使用软件实现
Day 1-1
变形与变形梯度:仿射变形假设
应变张量:小变形假设,大变形 (Lagrangian应变)
应力张量:小变形下应力张量,柯西应力,PK1应力,PK2应力
实操案例:分析法计算应变
图表 2 连续体变形示意图
图表 3 不同应力定义中使用的等效关系
Day 1-2
雷诺输运方程
主守恒方程
质量守恒方程
动量守恒方程
角动量守恒方程
热力学第一定律
线弹性本构关系
超弹性本构关系
超弹性问题的强形式与弱形式
实操案例:线弹性问题的软件/代码实现
工具方法
Python基础以及查询方法
ChatGPT和Github Copilot辅助工具
Day 2: 高等弹性力学与多场耦合
课程目标:
学习高等弹性力学以及其他多物理场问题的提法
学习线性/非线性粘弹性问题
其他复杂物理场:相场法断裂,传热,扩散问题
图表 4 多物理场耦合问题
Day 2-1
热力学第二定律
熵与自由能
孤立系统、封闭系统、开系统热力学描述
自由能
统计力学简介
高分子链熵弹性模型
超弹性问题处理流程
热力耦合问题
热-化学-力学耦合问题
断裂力学简介
相场法断裂问题
图表 5: 明锐边界与断裂相场法的扩散边界
图表 6 断裂相场法对称三点弯测试中的裂纹扩展
Day 2-2
有限元方法简介
COMSOL Multiphysics
教学
稳态分析
特征值分析
模态分析
时域分析频域分析
Day 3: 量纲分析和神经网络概述
课程目标:
学习量纲分析
了解神经网络,了解神经网络的类型
了解神经网络的结构和应用
Day 3-1
量纲分析介绍
量纲分析流程
量纲分析举例:单摆的周期,液滴的振动,液体表面张力测量
Day 3-2
感知机和神经网络
神经网络结构
神经网络的基本构建模块及其功能,如神经元、层、激活函数等核心组成部分。
正反向传播
参数迭代算法
深度学习技巧
权重初值,早停,正则化,Dropout
Day 4: PINNs的正逆问题
课程目标:
认识循环神经网络和物理信息神经网络
学习PINN解偏微分方程的方法原理
学习区分正问题、逆问题,并了解两种问题的处理方法
Day 4-1
递归神经网络(Recurrent Neural Networks, RNN)
长短时记忆网络(Long Short-Term Memory, LSTM)
实操:
神经网络模仿卷积算子
Day 4-2
PINN内容概述
介绍物理信息神经网络(Physics-Informed Neural Networks,PINN)基本概念,以及作为神经网络新兴方法分支的独特之处。
PINN方法原理
重点讲解PINN解偏微分方程的方法原理,讲解在解决具有复杂约束的工程问题时如何构建一个能够同时满足真实数据条件、初值条件、偏微分方程结构以及边界条件的多约束损失函数。
PINN的正问题和逆问题的构建
实操案例:PINN预测阻尼常微分方程的响应以及参数逆向算法
实操案例:1D, 2D热传导方程的PINNs方法求解
Day 5:论文复现
课程目标:
根据前期所学习的量纲分析和多物理场仿真问题,建立从0到1构建案例的操作流程
论文 (Flaschel et al., 2021)
Unsupervised discovery of interpretable hyperelastic constitutive laws.
图表 7具有物理意义的超弹性本构搜索的无监督算法示意图
论文 (Manav et al., 2024)
Phase-field modeling of fracture with physics-informed deep learning.
图表 8 对比神经网络和有限元分析获得的L形板的位移和相位场
论文 (Marino et al., 2023)
Automated identification of linear viscoelastic constitutive laws with EUCLID
图表 9 Comparison of true and identified response functions ordered as: shear loss, shear storage, bulk loss, bulk storage (row-wise from left to right) and with increasing number of clusters from 1 to 5 (column-wise from top to bottom) for the noise-free case.
课程总结展望
课程复习,根据案例提取深度学习处理固体力学问题的标准流程
机器学习与深度学习在固体力学领域的前景和局限
推荐学习资源 (在线课程、书籍、论文) 与进阶方向
参考文献
Flaschel, M., Kumar, S., & De Lorenzis, L. (2021). Unsupervised discovery of interpretable hyperelastic constitutive laws. Computer Methods in Applied Mechanics and Engineering, 381, 113852. https://doi.org/10.1016/j.cma.2021.113852
Karniadakis, G. E., Kevrekidis, I. G., Lu, L., Perdikaris, P., Wang, S., & Yang, L. (2021). Physics-informed machine learning. Nature Reviews Physics, 3(6), 422–440. https://doi.org/10.1038/s42254-021-00314-5
Manav, M., Molinaro, R., Mishra, S., & De Lorenzis, L. (2024). Phase-field modeling of fracture with physics-informed deep learning. Computer Methods in Applied Mechanics and Engineering, 429, 117104. https://doi.org/10.1016/j.cma.2024.117104
Marino, E., Flaschel, M., Kumar, S., & De Lorenzis, L. (2023). Automated identification of linear viscoelastic constitutive laws with EUCLID. MechanicsofMaterials,181,104643. https://doi.org/10.1016/j.mechmat.2023.104643