进入2024年,即便已经出现了一众号称性能媲美GPT-4级别的国产基础大模型,但调用OpenAI技术的需求仍然存在。
在江一接触到的合作客户中,有人明确提出希望提供OpenAI技术选项,“面对更开放、更发散性的问答时,OpenAI展现出来的答案还是更强一些。”
这也促使一些应用开发商对不同的模型做起人为分割,简单的问题推理,以及涉及垂类行业问答的场景,优先调用国内大模型,偏复杂推理和分析的内容,就交给OpenAI。
具体运行环节,有点类似当前业内推崇的MoE混合专家模型逻辑,当客户提出一个问题后,借助机器学习的匹配算法,先将问题分类,从而基于分类结果匹配对应的模型服务商。但是否使用OpenAI服务,还取决于客户是否愿意为此多花钱,“充什么样的会员套餐,给你供应什么样的大模型选择范围。”李振解释道。
不同于应用开发者的具体使用需求,那些同样有着自研大模型野心的国内厂商,通过接入OpenAI技术,还能起到辅助刷榜的作用。
知名大模型测试集C-Eval就曾在官网置顶声明,称评估永远不可能是全面的,任何排行榜都可能以不健康的方式被黑客入侵,并给出了几种常见的刷榜手法,如对强大的模型(例如GPT-4)的预测结果蒸馏、找人工标注然后蒸馏、在网上找到原题加入训练集中微调模型等等。
站在OpenAI的肩膀上,从模仿借鉴中快速赶超,则是国内大模型玩家接入OpenAI技术的更重要目的。
去年12月份,字节跳动被爆出正在研发一个名为“种子计划”(Project Seed)的AI大模型项目,但该项目在训练和评估模型等多个研发阶段调用了OpenAI的API,并使用ChatGPT输出的数据进行模型训练。
此举违反了OpenAI的使用协议,根据规则,OpenAI禁止使用输出开发竞争模型。因此,字节旗下部分GPT使用权限被OpenAI封禁。
字节官方坦陈,内部技术团队刚开始进行大模型的初期探索时,确实有部分工程师将ChatGPT的API服务应用于较小模型的实验性项目研究中,但“该模型仅为测试,没有计划上线,也从未对外使用。”
部分国产大模型在训练模型速度上快速起步的一大原因,同样离不开对国外大模型的借鉴。去年11月被传出套壳消息时,零一万物在回应字母榜中承认,在训练模型过程中,沿用了 GPT/LLaMA的基本架构,但需要说明的是,借鉴架构并不能跟“套壳”或者“抄袭”直接划等号。
不过,这确实帮助零一万物缩短了模型研发时间。去年3月,李开复正式宣布将亲自带队,成立一家AI 2.0公司,研发通用大模型。经过三个月筹办期,同年7月份,该公司正式定名“零一万物”,并组建起数十人的大模型研发团队。团队成型四个月后,零一万物便在11月份推出了“Yi”系列大模型产品,并借助Yi-34B霸榜多个大模型测试集。