锂离子电池与机器学习背景
Python基础语法、函数、模块和包、面向对象编程
机器学习库介绍:Numpy、Pandas、Matpliotlib、Seaborn、Scikit-learn
第一天下午
监督学习与非监督学习
K-近邻、支持向量机、决策树、线性回归、逻辑回归
实战一:使用机器学习预测锂离子电池性能:
特征工程描述包括电池的充放电循环数据、温度、电流、电压、电池的制造参数、材料特性等,选择不同的机器学习模型,例如决策树、随机森林、支持向量机,最后进行性能评估。
第二天上午
K-均值聚类、层次聚类、PCA、t-SNE
集成学习:随机森林、Boosting
交叉验证、性能指标、模型评估与选择、网格搜索
实战二:聚类分析在电池性能分类中的应用:
根据电池的容量、能量密度、内阻、循环稳定性等特征,选择合适的聚类算法,并通过降维判断聚类结果的有效性。
第二天下午
神经网络基础、激活函数、损失函数、梯度下降与反向传播
Pytorch构建全连接神经网络
深度学习中的正则化技术:L1、L2、Dropout
优化算法:SGD、Adam、RMSprop
超参数调优:网格搜索、随机搜索、贝叶斯优化
实战三:基于深度学习的高熵材料的虚拟高通量筛选:
收集和整理用于训练的数据集,包括高熵材料的化学组成、晶体结构、物理化学性质等,使用准备好的数据集对深度学习模型进行训练,并采用交叉验证等方法来评估模型的泛化能力。
第三天上午
循环神经网络
卷积神经网络
图神经网络
注意力机制
Transformer架构
生成对抗网络
变分自编码器
实战四:基于图神经网络的锂离子电池性能预测:
构建图神经网络模型,选择合适的架构,如GCN、GAT等,来学习材料图特征节点和边的表示,用于预测锂离子电池性能。
第三天下午
锂离子正极材料的特征工程
实战五:基于机器学习的锂金属正极材料的稳定性预测:
选择合适的机器学习模型,如支持向量机、随机森林、集成学习、神经网络,使用适当的评估指标,如准确率、召回率、F1分数等,来衡量模型预测锂金属正极材料稳定性的性能。
实战六:实验引导的高通量机器学习分析:
讲解将机器学习模型集成到实验流程中,优化实验过程,实现从实验设计到数据分析的自动化和智能化。
第四天上午
基于锂离子电池的机器学习与多尺度模拟
机器学习、分子动力学模拟与第一性原理计算
机器学习与实验结合
实战七:机器学习加速寻找新的固体电解质:
构建包含已知固体电解质材料的数据库,包括它们的化学组成、晶体结构、离子导电性等属性,利用训练好的模型对大量候选材料进行虚拟筛选,预测它们的离子导电性,快速识别出有潜力的新固体电解质。
第四天下午
机器学习在电池管理系统中的应用介绍
电池管理系统(BMS)的功能与组成
电池充放电管理
电池安全与保护
电池健康状态的指标
电池老化分析
基于机器学习的电池充放电策略优化
第五天上午
实战八:电池管理系统:物理模型与机器学习集成:
利用机器学习预测电池的长期性能和寿命,将机器学习集成到BMS中,实现对电池状态的实时监控和控制,定期评估机器学习模型的性能,并根据新的数据和反馈进行优化。
实战九:机器学习用于锂离子电池的实时充电状态(SOC)和健康状态(SOH)估计:
收集电池在不同充放电条件下的运行数据,包括电压、电流、温度、充放电时间等,训练机器学习模型,并通过交叉验证等方法评估模型的准确性和泛化能力,实现对SOC和SOH的实时估计。
第五天下午
实战十:基于GRU、LSTM、Transformer锂电池剩余寿命预测:
重点讲解如何设计GRU、LSTM或Transformer模型的架构,包括层数、隐藏单元的数量、输入和输出维度等,比较GRU、LSTM和Transformer模型的性能。
实战十一:从实验数据出发重构Mn-DRX设计思路:
讲解通过深度学习模型预测无序岩盐(DRX)材料结构和性能之间的关系,构造给定条件下的电压和容量之间的关系映射,讲解DRXNet模型将正极材料化学组分、电化学测试电流密度、工作电压窗口以及循环次数作为输入,来预测若干条放电曲线。
部分案例图片: