本文部分内容整理自
@谢熊猫君
原文部分翻译自:
《Road to Superintelligence》
很少有人意识到,未来10年的生产力进步可能会等于几千年的总和。
更少的人意识到,迄今为止,生产关系已经有160多年没有进步。
人工智能为生产力的提升提供了史无前例的可能。
而区块链,则从根本上颠覆了原有人类世界的生产关系。这两者,将会彻底改变人类的进程
。
我们正站在变革的边缘,而这次变革将和人类的出现一般意义重大
– Vernor Vinge
上次我们说到了从历史上看,人类生产力的进步速度是逐渐加快的。
未来学家Ray Kurzweil把这种人类的加速发展称
作
加速回报定律
,并认为
2
050年的世界会变得面目全非。
详情见:
人神分界的起点:人工智能与区块链(一)
今天我们主要介绍人工智能的概念,以及人工智能会如何以指数的速度提高生产力。
人工智能很可能导致人类的永生或者灭绝,而这一切很可能在我们的有生之年发生。
2.1. 人工智能是什么?
过去,我们一直以来把人工智能当做科幻小说,但是近来却不但听到很多正经人严肃的讨论这个问题,你可能也会困惑。这种困惑是有原因的:
1.我们总是把人工智能和电影想到一起。
星球大战、终结者、2001:太空漫游等等。电影是虚构的,那些电影角色也是虚构的,所以我们总是觉得人工智能缺乏真实感。
2.人工智能是个很宽泛的话题。
从手机上的计算器到无人驾驶汽车,到未来可能改变世界的重大变革,人工智能可以用来描述太多的东西,所以人们会有疑惑。
3.我们日常生活中已经每天都在使用人工智能了
,只是我们没意识到而已。John McCarthy,在1956年最早使用了人工智能(Artificial Intelligence)这个词。他总是抱怨“一旦一样东西用人工智能实现了,人们就不再叫它人工智能了。”
因为这种效应,所以人工智能听起来总让人觉得是未来的神秘存在,而不是身边已经存在的现实。同时,这种效应也让人们觉得人工智能是一个从未被实现过的流行理念。
所以,让我们从头开始。
人工智能的概念很宽,所以人工智能也分很多种,我们按照人工智能的实力将其分成三大类。
弱人工智
能 (ANI):
弱人工智能是擅长于单个方面的人工智能。比如有能战胜象棋世界冠军的人工智能,但是它只会下象棋,你要问它怎样更好地在硬盘上储存数据,它就不知道怎么回答你了。
强人工智
能 (AGI):
人类级别的人工智能。强人工智能是指在各方面都能和人类比肩的人工智能,人类能干的脑力活它都能干。创造强人工智能比创造弱人工智能难得多,
我们现在还做不到。
Linda Gottfredson教授把智能定义为“一种宽泛的心理能力,能够进行思考、计划、解决问题、抽象思维、理解复杂理念、快速学习和从经验中学习等操作。”强人工智能在进行这些操作时应该和人类一样得心应手。
超人工智
能 (ASI):
牛津哲学家,知名人工智能思想家Nick Bostrom把超级智能定义为“在几乎所有领域都比最聪明的人类大脑都聪明很多,包括科学创新、通识和社交技能。”超人工智能可以是各方面都比人类强一点,也可以是各方面都比人类强万亿倍的。超人工智能也正是为什么人工智能这个话题这么火热的缘故,同样也是为什么永生和灭绝这两个词会在本文中多次出现。
现在,
人类已经掌握了弱人工智能
。其实弱人工智能无处不在,人工智能革命是从弱人工智能,通过强人工智能,最终到达超人工智能的旅途。这段旅途中人类可能会生还下来,可能不会,但是无论如何,世界将变得完全不一样。
让我们来看看这个领域的思想家对于这个旅途是怎么看的,以及为什么人工智能革命可能比你想的要近得多。
2.2.
我们现在的位置——充满了弱人工智能的世界
弱人工智能是在特定领域等同或者超过人类智能/效率的机器智能,一些常见的例子:
-
汽车上有很多的弱人工智能系统,从控制防抱死系统的电脑,到控制汽油注入参数的电脑。谷歌正在测试的无人驾驶车,就包括了很多弱人工智能,这些弱人工智能能够感知周围环境并作出反应。
-
你的手机也充满了弱人工智能系统。当你用地图软件导航,接受音乐电台推荐,查询明天的天气,和Siri聊天,以及其它很多很多应用,其实都是弱人工智能。
-
世界最强的跳棋、象棋、拼字棋、双陆棋和黑白棋选手都是弱人工智能。
现在的弱人工智能系统并不吓人。最糟糕的情况,无非是代码没写好,程序出故障,造成了单独的灾难,比如造成停电、核电站故障、金融市场崩盘等等。
虽然现在的弱人工智能没有威胁我们生存的能力,我们还是要怀着警惕的观点看待正在变得更加庞大和复杂的弱人工智能的生态。
每一个弱人工智能的创新,都在给通往强人工智能和超人工智能的旅途添砖加瓦
。用Aaron Saenz的观点,现在的弱人工智能,就是地球早期软泥中的氨基酸——没有动静的物质,突然之间就组成了生命。
2.3. 弱人工智能到强人工智能之路为什么这条路很难走?
只有明白创造一个人类智能水平的电脑是多么不容易,才能让你真的理解人类的智能是多么不可思议。造摩天大楼、把人送入太空、明白宇宙大爆炸的细节——这些都比理解人类的大脑,并且创造个类似的东西要简单太多了。至今为止,
人类的大脑是我们所知宇宙中最复杂的东西。
而且创造强人工智能的难处,并不是你本能认为的那些。
造一个能在瞬间算出十位数乘法的计算机——非常简单
造一个能分辨出一个动物是猫还是狗的计算机——极端困难
造一个能战胜世界象棋冠军的电脑——早就成功了
造一个能够读懂六岁小朋友的图片书中的文字,并且了解那些词汇意思的电脑——谷歌花了几十亿美元在做,还没做出来。
一些我们觉得困难的事情——微积分、金融市场策略、翻译等,对于电脑来说都太简单了
我们觉得容易的事情——视觉、动态、移动、直觉——对电脑来说太TM的难了。
用计算机科学家Donald Knuth的说法,
“人工智能已经在几乎所有需要思考的领域超过了人类,但是在那些人类和其它动物不需要思考就能完成的事情上,还差得很远。”
读者应该能很快意识到,那些对我们来说很简单的事情,其实是很复杂的
。
要想达到人类级别的智能,电脑必须要理解更高深的东西,比如微小的脸部表情变化,开心、放松、满足、满意、高兴这些类似情绪间的区别,以及为什么《布达佩斯大饭店》是好电影,而《富春山居图》是烂电影。
想想就很难吧?
我们要怎样才能达到这样的水平呢?
增加电脑处理速度和
让电脑变得智能
要达到强人工智能,肯定要满足的就是电脑硬件的运算能力。如果一个人工智能要像人脑一般聪明,它至少要能达到人脑的运算能力。
用来描述运算能力的单位叫作cps(calculations per second,每秒计算次数),要计算人脑的cps只要了解人脑中所有结构的最高cps,然后加起来就行了。
现在最快的超级计算机,中国的天河二号,其实已经超过这个运算力了,天河每秒能进行3.4亿亿。当然,天河二号占地720平方米,耗电2400万瓦,耗费了3.9亿美元建造。广泛应用就不提了,即使是大部分商业或者工业运用也是很贵的。
Kurzweil认为考虑电脑的发展程度的标杆是看1000美元能买到多少cps,当1000美元能买到人脑级别的1亿亿运算能力的时候,强人工智能可能就是生活的一部分了。
摩尔定律认为全世界的电脑运算能力每两年就翻一倍,这一定律有历史数据所支持,这同样表明电脑硬件的发展和人类发展一样是指数级别的。我们用这个定律来衡量1000美元什么时候能买到1亿亿cps。现在1000美元能买到10万亿cps,和摩尔定律的历史预测相符合。
也就是说现在1000美元能买到的电脑已经强过了老鼠,并且达到了人脑千分之一的水平。听起来还是弱爆了,但是,让我们考虑一下,1985年的时候,同样的钱只能买到人脑万亿分之一的cps,1995年变成了十亿分之一,2005年是百万分之一,而2015年已经是千分之一了。
按照这个速度,我们到2025年就能花1000美元买到可以和人脑运算速度抗衡的电脑了。
至少在硬件上,我们已经能够强人工智能了(中国的天河二号),而且十年以内,我们就能以低廉的价格买到能够支持强人工智能的电脑硬件。
总有一天,我们会造出和人类智能相当的强人工智能电脑,然后人类和电脑就会平等快乐的生活在一起。
呵呵,逗你呢。