专栏名称: 脑极体
你的困惑,来自于无路贴近未知。我们在技术、思想、传播的异界,贩来极限脑量下的TMT。
目录
相关文章推荐
PChouse家居APP  ·  白墙+原木,法式自热风美到我不敢认! ·  3 天前  
PChouse家居APP  ·  Deepseek怒怼ChatGPT,究竟谁更 ... ·  4 天前  
51好读  ›  专栏  ›  脑极体

欧美日韩争相占坑的毫米波,真能喜提5G “海景房”吗?

脑极体  · 公众号  ·  · 2019-03-14 20:34

正文

5G要发展,频谱需先行,想必已经是业界共识了。


相信绝大多数关注5G进展的人,一定无法忽视一个名词,那就是“毫米波”。


作为5G通讯频率最具想象空间的频段,“毫米波”迅速火遍全球。给大家梳理一下各国关于“毫米波”的最新动向:


得益于“课代表”特朗普的勤奋催促,去年11月,美国率先释放并完成了三个高频频谱的拍卖工作,并宣布集中重点发展28GHz毫米波。AT&T、Verizon、Sprint、T-Mobile等运营商也开始大力购买高频频谱;


韩英德等国也相继完成了高频频段的频谱拍卖,日本也将于今年3月分配和美韩波段一样的高频段毫米波频谱。


而中国则在去年确定了高中低频段联合组网的设计方案,并完成中频段频谱的划拨,关于毫米波优先研究的规划意见也已经启动。



不难发现,大家对5G的期许都离不开“毫米波”的部署,英美等国更是纷纷对高频段给出了“跳楼优惠价”(低频谱价格要贵48%左右),试图吸引更多人投身高频段研发的星辰大海。


更有无数评论者用地产理论来形容“毫米波”的重要性,发出“毫米波就是5G黄金地段”的高呼。


如此强劲的势头之下,大家很容易产生一种在看“巅峰豪宅”“臻品稀缺”式楼盘广告的错觉:毫米波,5G的价值洼地,再不出手就晚了!事实果真如此吗?


我们不妨用一篇文章剥开毫米波神秘的外衣,看看这朵5G频谱的“高岭之花”,究竟是虚火还是金矿?


什么是毫米波?


我们先来了解一下,集宠爱于一身的毫米波,究竟有何神奇之处?


毫米波(millimeter wave),指的是波长从10毫米至1毫米、频率从30GHz-300GHz的电磁波,利用毫米波作为传输信息的载体进行通讯的研究,其实早在1889年就提出了。


不过,直到1970年代,由于毫米波集成电路和毫米波固体器件实现了成功量产,才使得毫米波通讯开始蓬勃发展。


但受限于高频段电磁波的独特特性,当时“毫米波”的应用范围主要集中在雷达、制导、遥感、辐射测量等军事领域。


到了1990年代,互联网、无线电通信、汽车雷达等业务量的爆发式增长,才推动了毫米波民用技术应运而生。


而随着4G移动通讯的快速发展,低频段也日趋饱和,中国、韩国已经面临着没有低频频谱可以分配给5G网络的“断粮”危机了。


既然成熟的“市中心”已经没有土地再盖新楼了,未来庞大的新增网络人口和海量物联设备应该去何处寻找归宿?答案自然就是建设“新城区”。



那么,为什么不少国家不先借中频段过渡一下,直接就将发展重心锚定了高频段呢?恐怕要从“毫米波”的独特优势说起。


“毫米波”并不是一件新鲜事,之所以能够让人趋之若鹜,关键还在于其作为一种带宽范围极大的增量频谱资源,能够直接缓解5G发展中频谱不足的问题。


比起费力提高4G网络的传输效率,直接去“地广人稀”的高频段建设“新家园”,显然要简单粗暴也有效得多了。


更何况,毫米波还有其不可取代的优势。一是由于频段极高,波束又比较窄,毫米波遇到的干扰源就少很多,从而大大降低了信息被截获的风险,使得无线通讯更加稳定可靠,保密性极强;


另一个突出特点,则是良好的方向性和穿透力,可以直接与目标进行点对点传输,对沙尘、烟雾等天气的穿透能力也强得多,能够全天候持续可靠地进行工作,对于深受雾霾困扰的北方人民来说,算是悲伤中的一点希望了吧。


而且,毫米波通讯的元器件也更容易小型化,未来部署在更轻薄的5G手机或智能物联网等设备上,显然更受青睐。


说了这么多,毫米波“5G价值洼地”的尊贵身份似乎已经坐实,外界也仿佛形成了一个印象,此刻不搞毫米波,就像回到08年却不买房一样,傻就一个字,我只说一次?


那么问题来了,毫米波在5G商业化上的真实进展到底如何呢?


毫米波民用发展史


在探讨毫米波的商业化潜力之前,不妨先顺着时间线捋一捋,毫米波在民用端究竟经历了什么?


前面我们提到,毫米波在1960年代就被应用于通讯工作,但在很长一段历史时期内,都跟普通人没什么关系,关于它的民间开发一直处于蛮荒地带。直到1990年代,美国出现了77 GHz的汽车防撞雷达,这才开启了毫米波在民用端的落地之旅。


简单来说,毫米波的民用化一共经历了三个阶段:


阶段一:在频谱开放的边缘试探。美国率先尝试推进毫米波的民用。1995年,美国联邦通信委员会开放了59至64 GHz的频谱;2003年,FCC授权使用71-76 GHz和81-86 GHz进行许可的点对点通信。至此,毫米波相关的大量通讯设备和服务开始涌现。


阶段二:最受欢迎的精密传感器。集成电路的发展为毫米波产品的大规模商用创造了条件,很快,采用毫米波作为传感器的芯片雷达,吸引了众多厂商投入研究,并随着工业化的浪潮成为大多数汽车的标配。


至此,毫米波的商业价值开始真正显现出来,2014年,毫米波车载雷达的出货量达到了1900万颗,也因此成就了奥托立夫、博世、大陆、德尔福、海拉、富士通等一系列国际半导体公司。


在中国,东南大学、中科院等军方院校打造的安防雷达、船舶雷达等,也逐渐走入大众视野。



阶段三:5G与智能。而无人驾驶和5G的火爆,毫米波作为自动驾驶汽车和海量物联网的“眼睛”,又一次引爆了人们的美好想象,各种基于新技术条件和硬件基础的解决方案开始涌现。


2015-2016年,毫米波雷达迎来了融资高潮,大批科研或军工背景的团队开始关注民用,厦门意行等企业纷纷开始毫米波雷达前端射频芯片(MMIC)的研发。


网络部署层面,英特尔和高通都分别在2018年提出了面对5G的毫米波相控阵设计方案,华为也完成了毫米波接入回传一体化(IAB,Integrated Access & Backhaul)技术的外场测试,以期提高毫米波频谱在5G应用上的稳定性和吞吐率。


至此,我们可以大概总结出毫米波在民用通讯上的真实现状:想象空间和市场潜力巨大,但5G大规模应用还停留在实验和设想层面,实际应用中还有许多技术难题有待攻克。

先天不足:毫米波还有哪些问题?


目前来看,毫米波的确有足够的条件引发国家战略级别的无限想象,但诸多美好的愿景背后,毫米波作为高频谱的“先天不足”也反噬着它在5G时代的商业价值。


简单来说,在实际应用中, 毫米波不可避免地存在三大天然缺陷:


1.传输损耗。


毫米波在恶劣的气候条件和障碍物环境中衰减严重,往往只能覆盖很小的距离(<100米)。


我们知道,5G应用的三大场景:eMBB移动超宽带,uRLLC超可靠低延迟,mMTC海量物联网,对于通讯网络的效率、质量、范围有着苛刻而极致的要求。


比如低延迟的车联网,需要千米级别的远距离覆盖才能保证信号的稳定性,众多移动物联网终端也需要稳定清晰的通信来保证用户体验。


然而毫米波却十分娇气,天气不好、降雨太大、需要穿墙、遇到反射,都会让它的信号大幅度衰减,就连穿过空气都会出现“氧衰”。


试想一下,在高楼林立的CBD,你的车载导航、手机、智能手表等通通没有信号,或者每走几米就要切换基站,会是多么灾难的体验。


2.基站噪音。


既然毫米波在传播过程中会遇到穿透损耗和大气衰减,那我们将毫米波基站部署在地广人稀的农村,高高挂在电线杆上;亦或是在人流量密集的场所进行高密度部署,靠数量碾压可不可行呢?


如果不考虑成本问题,这样做是可以弥补通信能力的不足,但是多基站导致的高频噪音问题,运营商也没有办法售后哦,这边建议您直接搬家呢~


3.高昂成本。


前面提到的“不计成本”,是在纸上谈兵层面,但真正到产业端,毫米波基站的部署意味着全面焕新,终端芯片和天线也需要重新研发,且不提其中的技术门槛和研发周期,仅仅是部署这么多基础设施,就需要运营商投入大量的建设成本。


这些成本分散到消费端,显然是普通民众的不可承受之重;让企业或国家买单显然也不符合经济规律。


正是因此,中国移动、联通等都将毫米波的商用计划推迟到了2022年左右。


总而言之,毫米波之于5G的重要性不言而喻,各国也都将其置于优先研究的地位,但种种先天不足,决定了它在现阶段难以大展拳脚。


既然如此,为什么其他国家纷纷迫不及待地安排上了?


毫米波热的幕后推手


从产业基本面来看,毫米波的火热,确实有着现实的根基。比如说5G产业需求的爆发,纳米级晶体管技术的成熟,大规模工业化的可能以及较低的许可证价格,这些都成为毫米波商业化落地的基石。


但通信能力如何补全,基站问题怎么解决,投入产出如何权衡,终端体验能否保障……毫米波想要成功可以说把整个行业折腾个半死也不为过。


因此,相比于形而上的商业前景,我们更想了解的是,到底是怎样的考量,让不少国家冒着技术不成熟、前期大投入的风险,也要催熟毫米波?



或许可以从三个方面来解释这场“技术期货”的爆火:








请到「今天看啥」查看全文