本文简绍了NLTK的使用方法,这是一个被称为“使用Python进行计算语言学教学和工作的绝佳工具”。
NLTK被称为“使用Python进行计算语言学教学和工作的绝佳工具”。
它为50多种语料库和词汇资源(如WordNet)提供了易于使用的界面,还提供了一套用于分类,标记化,词干化,标记,解析和语义推理的文本处理库。
接下来然我们一起来实战学习一波~~
官网地址:
http://www.nltk.org/
Github地址:
https://github.com/nltk/nltk
1.Tokenize
import nltk
sentence = 'I love natural language processing!'
tokens = nltk.word_tokenize(sentence)
print(tokens)
['I', 'love', 'natural', 'language', 'processing', '!']
2.词性标注
tagged = nltk.pos_tag(tokens)
print(tagged)
[('I', 'PRP'), ('love', 'VBP'), ('natural', 'JJ'), ('language', 'NN'), ('processing', 'NN'), ('!', '.')]
3.命名实体识别
nltk.download('maxent_ne_chunker')
[nltk_data] Downloading package maxent_ne_chunker to
[nltk_data] C:UsersyuquanleAppDataRoaming
ltk_data...
[nltk_data] Unzipping chunkersmaxent_ne_chunker.zip.
True
nltk.download('words')
[nltk_data] Downloading package words to
[nltk_data] C:UsersyuquanleAppDataRoaming
ltk_data...
[nltk_data] Unzipping corporawords.zip.
True
entities = nltk.chunk.ne_chunk(tagged)
print(entities)
(S I/PRP love/VBP natural/JJ language/NN processing/NN !/.)
nltk.download('brown')
[nltk_data] Downloading package brown to
[nltk_data] C:UsersyuquanleAppDataRoaming
ltk_data...
[nltk_data] Package brown is already up-to-date!
True
from nltk.corpus import brown
brown.words()
['The', 'Fulton', 'County', 'Grand', 'Jury', 'said', ...]
from nltk.metrics import precision, recall, f_measure
reference = 'DET NN VB DET JJ NN NN IN DET NN'.split()
test = 'DET VB VB DET NN NN NN IN DET NN'.split()
reference_set = set(reference)
test_set = set(test)
print("precision:" + str(precision(reference_set, test_set)))
print("recall:" + str(recall(reference_set, test_set)))
print("f_measure:" + str(f_measure(reference_set,
test_set)))
precision:1.0
recall:0.8
f_measure:0.8888888888888888
6.词干提取(Stemmers)
from nltk.stem.porter import *
stemmer = PorterStemmer()
plurals = ['caresses', 'flies', 'dies', 'mules', 'denied']
singles = [stemmer.stem(plural) for plural in plurals]
print(' '.join(singles))
caress fli die mule deni
from nltk.stem.snowball import SnowballStemmer
print(" ".join(SnowballStemmer.languages))
arabic danish dutch english finnish french german hungarian italian norwegian porter portuguese romanian russian spanish swedish
stemmer = SnowballStemmer("english")
print(stemmer.stem("running"))
run
7.SentiWordNet接口
import nltk
nltk.download('sentiwordnet')
[nltk_data] Downloading package sentiwordnet to
[nltk_data] C:UsersyuquanleAppDataRoaming
ltk_data...
[nltk_data] Unzipping corporasentiwordnet.zip.
True
from nltk.corpus import sentiwordnet as