专栏名称: 亿级流量网站架构
开涛技术点滴
目录
相关文章推荐
程序员小灰  ·  清华大学第二弹:DeepSeek如何赋能职场应用? ·  昨天  
OSC开源社区  ·  DS豆包通义BTY王炸组合,我做了个元宵AI ... ·  昨天  
程序员的那些事  ·  微信听劝,这个扰人功能可以关了 ·  昨天  
OSC开源社区  ·  100%国产AI新成员:壁仞科技成功适配De ... ·  5 天前  
OSC开源社区  ·  龙芯处理器成功运行DeepSeek大模型 ·  3 天前  
51好读  ›  专栏  ›  亿级流量网站架构

多级缓存设计详解 | 给数据库减负,刻不容缓!

亿级流量网站架构  · 公众号  · 程序员  · 2018-08-10 10:00

正文

王梓晨:物流研发部架构师,GIS技术部负责人,2012年加入京东,多年一线团队大促备战经验,负责物流研发一些部门的架构工作,专注于低延迟系统设计与海量数据处理。曾负责青龙配送分单团队,主导重构架构设计与主要研发工作,短期内提升了服务性能数十倍。还设计研发了地址配送网点分类模型,实现了配送到路区的精准化分单,降本增效,大幅提升了自动分单准确率。目前负责物流GIS部门,先后主导了国标转京标、物流可视化等项目。



自古兵家多谋,《谋攻篇》,“故上兵伐谋,其次伐交,其次伐兵,其下攻城。攻城之法,为不得已”,可见攻城之计有很多种,而爬墙攻城是最不明智的做法,军队疲惫受损、钱粮损耗、百姓遭殃。故而我们有很多迂回之策,谋略、外交、军事手段等等,每一种都比攻城的代价小,更轻量级,缓存设计亦是如此。


为什么要设计缓存呢?

其实高并发应对的解决方案不是互联网独创的,计算机先祖们很早就对类似的场景做了方案。比如《计算机组成原理》这样提到的cpu缓存概念,它是一种高速缓存,容量比内存小但是速度却快很多,这种缓存的出现主要是为了解决cpu运算速度远大于内存读写速度,甚至达到千万倍。


传统的cpu通过fsb直连内存的方式显然就会因为内存访问的等待,导致cpu吞吐量下降,内存成为性能瓶颈。同时又由于内存访问的热点数据集中性,所以需要在cpu与内存之间做一层临时的存储器作为高速缓存。


随着系统复杂性的提升,这种高速缓存和内存之间的速度进一步拉开,由于技术难度和成本等原因,所以有了更大的二级、三级缓存。根据读取顺序,绝大多数的请求首先落在一级缓存上,其次二级...

cpu  core1

cpu  core2

L1d

(一级数据缓存)

L1i

(一级指令缓存)

L1d

(一级数据缓存)

L1i

(一级指令缓存)

L2

L2

L3

L3

故而应用于SOA甚至微服务的场景,内存相当于存储业务数据的持久化数据库,其吞吐量肯定是远远小于缓存的,而对于java程序来讲,本地的jvm缓存优于集中式的redis缓存。


关系型数据库操作方便、易于维护且访问数据灵活,但是随着数据量的增加,其检索、更新的效率会越来越低。所以在高并发低延迟要求复杂的场景,要给数据库减负,减少其压力。

给数据库减负

1、缓存分布式,做多级缓存

读请求时写缓存

写缓存时一级一级写,先写本地缓存,再写集中式缓存。具体些缓存的方法可以有很多种,但是需要注意几项原则:

  1. 不要复制粘贴,避免重复代码

  2. 切忌和业务耦合太紧,不利于后期维护

  3. 开发初期刚刚上线阶段,为了排查问题,常常会给缓存设置开关,但是开关设置多了则会同时升高系统的复杂度,需要结合一套统一配置管理系统,京东物流有一套叫做UCC,且听下回分解......


综上所述,高耦合带来的痛,弥补的代价是很大的,所以可以借鉴Spring cache来实现,实现也比较简单,使用时一个注解就搞定了。

写缓存失败了怎么办?应该先写缓存还是数据库呢?

既然是缓存的设计,那么策略一定是保证最终一致性,那么我们只需要采用异步消息来补偿就好了。


大部分缓存应用的场景是读写比差异很大的,读远大于写,在这种场景下,只需要以数据库为主,先写数据库,再写缓存就好了。


最后补充一点,数据库出现异常时,不要一股脑的catch RuntimeException,而是把具体关心的异常往外抛,然后进行有针对性的异常处理。

关于其他性能方面

缓存设计都是占用越少越好,内存资源昂贵以及太大不好维护都驱使我们这样设计。所以要尽可能减少缓存不必要的数据,有的同学图省事把整个对象序列化存储。另外,序列化与反序列化也是消耗性能的。

2、vs各种缓存同步方案

缓存同步方案有很多种,在考虑一致性、数据库访问压力、实时性等方面做权衡。总的来说有以下几种方式:


懒加载式

如上段提到的方式,读时顺便加载。为了更新缓存数据,需要过期缓存。



优点:简单直接

缺点:

  • 会造成一次缓存不命中

  • 这样当用户并发很大时,恰好缓存中无数据,数据库承担瞬时流量过大会造成风险。


懒加载式太简单了,没有自动加载,异步刷新等机制,为了弥补其缺陷,请参见接下来的两种方法。


补充式

可以在缓存时,把过期时间等信息写到一个异步队列里,后台起个线程池定期扫描这个队列,在快过期时主动reload缓存,使得数据会一直保持在缓存中,如果缓存没有也没有必要去数据库查询了。常见的处理方式有使用binlog加工成消息供增量处理。


  • 优点:刷新缓存变为异步的任务,对数据库的压力瞬间由于任务队列的介入而降低了,削平并发的波峰。

  • 缺点:消息一旦积压会造成同步延迟,引入复杂度。

定时加载式

这就需要有个异步线程池定期把数据库的数据刷到集中式缓存,如redis里。


  • 优点:保证所有数据最小时间差同步到缓存中,延迟很低。

  • 缺点:如补充式,需要一个任务调度框架,复杂度提升,且要保证任务的顺序。如果递进一步还想加载到本地缓存,就得本地应用自己起线程抓取,方案维护成本高。可以考虑使用mq或者其他异步任务调度框架。

  • ps:为了防止队列过大调度出现问题,处理完的数据要尽快结转,且要对积压数据以及写入情况做监控。

3、防止缓存穿透

缓存穿透是指查询的key压根不存在,从而缓存查询不到而查询了数据库。若是这样的key恰好并发请求很大,那么就会对数据库造成不必要的压力。怎么解决呢?

  1. 把所有存在的key都存到另外一个存储的Set集合里,查询时可以先查询key是否存在。

  2. 干脆简单一些,给查询不到的key也加一个标识空值的Value,这样就不会去查询数据库了,比如场景为查询省市区街道对应的移动营业厅,若是某街道确实没有移动营业厅,key规则不变,value可以设置为"0"等无意义的字符。当然此种方案要保证缓存集群的高可用。

  3. 这些Key可能不是永远不存在,所以需要根据业务场景来设置过期时间。

4、热点缓存与缓存淘汰策略

有一些场景,需要只保持一部分的热点缓存,不需要全量缓存,比如热卖的商品信息,购买某类商品的热门商圈信息等等。


综合来讲,缓存过期的策略有以下三种:








请到「今天看啥」查看全文