专栏名称: 零壹财经
零壹财经,创办于2013年,新金融第一媒体。登陆01caijing.com更多精彩。零壹公司是中国领先的新金融成长服务机构。
目录
相关文章推荐
经济观察报  ·  A股收评:沪指涨1.01%重回3300点,全 ... ·  15 小时前  
央视财经  ·  “极端性”大风+降温!寒潮来袭!紧急提醒→ ·  16 小时前  
有限次重复博弈  ·  点评一下? 有限次重复博弈的微博视频 ... ·  2 天前  
经济观察报  ·  600837终止交易 老牌券商海通证券落幕 ·  2 天前  
51好读  ›  专栏  ›  零壹财经

垂直大模型的第一关:把数据“煮熟”

零壹财经  · 公众号  · 财经  · 2024-10-16 16:44

主要观点总结

国家电子计算机质量检验检测中心专家表示,垂直大模型的第一关是数据治理,面临缺乏统一标准的问题。特别是金融行业,虽然有很多部门和政府都在尝试做数据治理,但还未形成统一的数据治理标准。专家指出,数据治理是一项复杂工程,需要系统性指引。我国推出了DCMM标准,但具体实施层面仍面临挑战。大多数企业处于数据管理的2级阶段,数据需求仅限于业务层面。同时,政务数据和金融数据的管理也各有特点,金融行业的整体数据管理情况积极向好,但仍需完善和提升。

关键观点总结

关键观点1: 垂直大模型的第一关是数据治理,面临缺乏统一标准的问题。

缺乏权威统一的标准规范,缺少工作依据,特别是金融行业。

关键观点2: DCMM标准是我国在数据管理领域的首个国家标准。

该标准代表了一种自上而下的数据治理方法,内容和方法确实缺少统一定义。

关键观点3: 数据管理水平需全面提升。

不同企业数据管理成熟度差异大,金融行业适合借助DCMM标准体系的推广来提升自身数据管理能力。

关键观点4: 大多数企业处于数据管理的2级阶段。

数据需求仅限于业务层面,企业对于数据治理的意义和认识有待提升。

关键观点5: 政务数据和金融数据的管理各有特点。

政务数据管理在推动数据整合和共享方面发挥积极作用;金融行业整体数据管理情况积极向好,但仍需完善和提升。


正文

来源 | 零壹智库

国家电子计算机质量检验检测中心专家:

垂直大模型的第一关:把数据“煮熟”

在应用上下功夫,被很多人认为是中国大模型超车的捷径。应用就要落脚到各个行业和场景,也就是垂直大模型。但是做垂直模型也面临着很多难关。

“很多行业缺乏权威统一的标准规范,缺少工作依据,特别是金融行业,虽然有很多部门和政府都在尝试做,但还未形成统一的数据治理标准。”国家电子计算机质量检验检测中心(以下简称“国家计算机质检中心”)专家认为,这是发展垂直大模型要过的第一关,否则都将是无米之炊。

2024年8月16日,在零壹智库与苏州高铁新城产业发展有限公司联合举办的“金融数智化系列研讨会之:金融大模型的机遇与门槛”会议上,国家计算机质检中心专家对数据治理问题进行了深入阐述。

在会后的访谈中,国家计算机质检中心专家在会议发言的基础上,系统阐述了对数据治理、数据管理等方面的理解。

01

垂直模型初具数据基础

零壹财经:一般认为,大模型的发展有三大基础,算力、算法和数据。当前讨论较多的数据更多是各类公开和公共数据,但随着大模型向各个产业、细分领域和场景深入,行业性数据、商业性数据、用户数据等非公开数据就成为核心资源。现在是否具备发展垂直领域大模型的数据基础?

国家计算机质检中心专家:

随着各行业数字化水平持续提高以及大数据前沿技术的进步,许多企业和单位已经建立起自己的数据中心、数据仓库等,积累了大量的行业性数据、商业性数据和用户数据,其内容和种类丰富,已经初步具备了发展大模型的技术和数据基础。

但是在具体实施层面,仍然存在一些挑战。比如数据的有效性和准确性,直接影响大模型的训练效果;比如在训练过程中如何保护用户数据隐私,防止泄露。

让数据可用、好用,更加真实地反映行业和用户需求,这对于数据质量和数据安全提出了持续性要求,需要有一套常态化的数据管理手段。

02

数据管理的国家标准

零壹财经:看来数据管理是关键。但数据管理是很笼统的说法,可以包含数据业务的方方面面,如何建立合理的数据管理标准?

国家计算机质检中心专家:

近年来虽然对于数据管理和治理领域的标准重视程度日益提高,但其内容和方法确实缺少统一定义,通常以信息化、数字化系统建设为主要手段。

而不同企业的数据管理现状差异很大。数据治理是一项复杂工程,往往面临众多问题,需要系统性指引。

正是基于构建数据管理基础制度的顶层设计,我国从整个体系框架的层面推出了DCMM标准,即《数据管理能力成熟度评估模型》。

这是我国在数据管理领域的首个国家标准,代表了一种自上而下的数据治理方法,经过多年的大力推广,正处于高速发展期。

DCMM标准体系将企业数据管理成熟度划分为五个等级,按照从低至高的特征,分别为项目级、部门级、组织级、量化级、优化级,清晰地定位不同企业数据管理能力所处的阶段。

通过数千家企业的评估实践,已经充分证明了DCMM等级划分的科学性和适用性。

金融行业同样也适合借助DCMM标准体系的推广、贯标以及应用,帮助企业和行业机构科学的评估自身的数据管理能力,发现自身在数据管理方面的问题和不足,建立起符合自身特点的数据管理框架,为金融数据资产化、参与数据市场流通奠定了坚实基础。

零壹财经:具体而言,在哪些环节、哪些领域进行改进,才能获得更好的数据管理级别?

国家计算机质检中心专家:

DCMM体系兼顾了技术和管理多方面的要求,从组织、制度、流程、工具等多个维度综合分析,帮助企业发现问题,改进问题。它充分覆盖了数据治理的常见要素,具体包括八个核心能力域——数据战略、数据治理、数据架构、数据标准、数据应用、数据安全、数据质量、数据生存周期。

具体来说,应当运用先进的技术工具和平台,支撑大数据治理和应用工作落地;同时也要重视全过程的规范管理,引导企业的管理部门和业务部门共同参与,保障数据管理工作的闭环和常态化执行;应当自上而下地推动形成数据管理文化和意识,明确数据管理的目标、路径和权责,避免为了治理而治理;积极探索多样的数据分析、数据共享方式,挖掘并实现内外部数据资产价值。

这样多管齐下,才能全面提升数据管理水平。

03

挑战:大部分企业还处于2级阶段

零壹财经:经过近几年的数据管理检测和评级的推进,你们认为现在数据管理领域面临的最大的问题是什么?

国家计算机质检中心专家:

从企业方面来说,领导层面的认识和决心是最重要的,是数智化转型的原动力。面对数据管理这样一项涉及众多部门、需要耗费大量精力和财力的工作,不同行业和地区的现状也差异较大。

以DCMM全国贯标工作的数据来看,大部分企业处于2级阶段,也代表着大部分数据需求仅限于业务层面,对于数据治理体系和平台的整体规划投入不足,企业对于数据治理的意义和认识有待提升。

从行业的角度,数据管理工作在落地的过程中,往往面临行业数据标准欠缺的问题。各行业工作特性差异巨大,势必需要细致的数据质量、数据标准、数据安全等行业规范。

如果没有权威、统一的行业数据治理标准,由企业自行开展规划建设,既增加了数据治理的成本和难度,也对数据开放共享流通环节带来困难。

而在数据管理测评认证方面,虽然数据领域的各项标准在积极推进,但全国性的、权威的数据治理认证体系仍然不多。

譬如现在国家大力推动的数据入表、数据要素交易流通等工作,其前提就要求确保数据质量,由第三方机构出具数据质量报告。但数据质量标准在各行业、各地区的落地转化、评估认证仍然缺乏统一的体系,尺度和要求不一。

数据质量报告难以跨行业、跨地区的相互认可,这不仅限制了大规模数据交易和应用,也增加了国家和行业监管的难度,无法准确衡量数据质量和制定监管措施,影响数据市场的长远健康发展。

04

政务数据的特点与尝试

零壹财经:各行各业都有很多数据其实掌握在政府部门。从政府数据管理的角度看,目前“数据成熟度”如何?

国家计算机质检中心专家:

政府和政务数据是我国近年在数据治理领域意识比较领先的,发挥着积极作用。一方面各地政数局等数据主管部门牵头制定公共数据共享服务标准,规划和规范各地区数据治理的顶层设计。

同时一些发展水平较成熟的地区,积极牵头建设数据交换共享服务平台,甚至设立数据交易流通市场,深度参与到数据治理工作中,推动数据资源的整合和共享,为政府数据管理提供了更加便捷、高效的工具,有助于提升各地数据管理的规范化和标准化水平。







请到「今天看啥」查看全文