专栏名称: 大数据应用
数据应用学院被评为2016北美Top Data Camp, 是最专业一站式数据科学咨询服务机构,你的数据科学求职咨询专家!
目录
相关文章推荐
CDA数据分析师  ·  用Deepseek处理复杂数据效果好吗?小白 ... ·  昨天  
CDA数据分析师  ·  【2月】CDA网校2025 ... ·  3 天前  
数据派THU  ·  【ICLR2025】扩散图网络:使用扩散图网 ... ·  5 天前  
天池大数据科研平台  ·  使用DeepSeek必备的10个技巧 ·  3 天前  
国家数据局  ·  2024年“数据要素×”大赛优秀项目案例集— ... ·  3 天前  
51好读  ›  专栏  ›  大数据应用

每日一练 | Data Scientist & Business Analyst & Leetcode 面试题 358

大数据应用  · 公众号  · 大数据  · 2018-05-18 09:08

正文

点击上方 蓝字 会变美




MAY

17

Data Application Lab 自2017年6月15日起,每天和你分享讨论一道数据科学(DS)和商业分析(BA) 领域常见的面试问题。

自2017年10月4日起,每天再为大家分享一道Leetcode 算法题。


希望积极寻求相关领域工作的你每天关注我们的问题并且与我们一起思考,我们将会在第二天给出答案。

Day

258

DS Interview Question

What is A/B Testing?

BA Interview Question

R Programming: explain the usage of which() function in R language and name an example of that function

LeetCode Question

Merge Two Sorted Lists


Description:

Merge two sorted linked lists and return it as a new list. The new list should be made by splicing together the nodes of the first two lists.


Input: 1->3->5->null 2->4->6->7->null

Output:1->2->3->4->5->6->7->null


Day

257

答案揭晓

DS Interview Question & Answer

What's difference between pca and kernel pca?

Answer:


* The standard PCA always finds linear principal components to represent the data in lower dimension. Sometime, we need non-linear principal components.If we apply standard PCA for the below data, it will fail to find good representative direction. Kernel PCA (KPCA) rectifies this limitation.

* Kernel PCA just performs PCA in a new space.

* It uses Kernel trick to find principal components in different space (Possibly High Dimensional Space).

* PCA finds new directions based on covariance matrix of original variables. It can extract maximum P (number of features) eigen values. KPCA finds new directions based on kernel matrix. It can extract n (number of observations) eigenvalues.

* PCA allow us to reconstruct pre-image using few eigenvectors from total P eigenvectors. It may not be possible in KPCA.

* The computational complexity for KPCA to extract principal components take more time compared to Standard PCA.

BA Interview Question & Answer

R Programing: imagine you have two columns in a dataframe, ‘Gender’ and ‘Loan_Status’, both are categorical variables. ‘Gender’ has ‘Male’,’Female’ and NA values, ‘Loan_Status’ with ‘Yes’ and ‘No’. Now, how do you use ‘dplyr’ package to calculate the percentage for male and female when Loan Status equals to ‘No’, remember to ignore NA values.


Sample Output:







请到「今天看啥」查看全文