专栏名称: 学术头条
致力于科学传播和学术分享,关注计算机科学、认知科学、人工智能科学、神经科学、脑科学等学科领域。我们从跨学科的角度,围绕“认知智能”向科学界和大众介绍相关领域的前沿话题和深度解读。
目录
相关文章推荐
济南音乐广播Music887  ·  双子座可以多出门活动,能达到放松身心的效果 ·  16 小时前  
济南音乐广播Music887  ·  双子座可以多出门活动,能达到放松身心的效果 ·  16 小时前  
四川日报  ·  “不给就捅死你!”司机李某,已被抓获 ·  昨天  
自贡网  ·  @自贡人,3月起看病不用再交这笔钱! ·  2 天前  
煮娱星球  ·  他出圈的方式竟然是进局子··· ·  3 天前  
煮娱星球  ·  这对儿...也离了? ·  3 天前  
51好读  ›  专栏  ›  学术头条

精准“算病”!AI检测癌症,准确率高达94%,研究登上Nature

学术头条  · 公众号  ·  · 2024-09-10 08:26

正文



撰文 | 马雪薇

编审 | 学术君


前言

根据世界卫生组织最新调查报告显示,2022年,估计有 2000 万新增癌症病例和 970 万死亡病例。癌症确诊后 5 年内存活的估计人数为 5350 万。大约五分之一的人在一生中罹患癌症,大约九分之一的男性和十二分之一的女性死于癌症。


2024 年 2 月 2 日,世界卫生组织国际癌症研究机构(IARC)最新发布的 Global cancer burden growing, amidst mounting need for services,预计 2050 年将有超过 3500 万新增癌症病例,比 2022 年的估计 2000 万例增加 77%。这再一次强调了目前日益加重的全球癌症负担,值得世界范围内的重视。


组织病理学图像评估是诊断癌症的一种有效的方法。近日,来自哈佛医学院的研究团队及其合作者提出了临床组织病理学成像评估基础(CHIEF)模型,用于提取病理成像特征以进行系统的癌症评估。


在包含 11 种癌症类型的 15 个数据集上,CHIEF 在癌症检测方面实现了近 94% 的准确率,显著优于当前的人工智能方法。在从独立队列收集的 5 个活检数据集中,CHIEF 在包括食道癌、胃癌、结肠癌和前列腺癌在内的多种癌症类型中达到了 96% 的准确率。当研究人员在以前从未见过的结肠、肺、乳腺、子宫内膜和子宫颈手术切除肿瘤的切片上测试 CHIEF 时,该模型的准确率超过 90%。


相关研究论文以 “A pathology foundation model for cancer diagnosis and prognosis prediction” 为题,已发表在权威科学期刊 Nature 上。



该研究的共同通讯作者、哈佛医学院助理教授 Kun-Hsing Yu 表示:“我们的目标是创建一个灵活、多功能的类似 ChatGPT 的人工智能 (AI)平台,可以执行广泛的癌症评估任务,我们的模型在与多种癌症的癌症检测、预后和治疗反应相关的多项任务中非常有用。”


研究人员指出,未来若对该方法进行进一步验证并广泛推广,将能够辨识出早期癌症患者。这些患者可能会从针对特定分子变异的实验性治疗中获益,这将有助于缩小全球范围内此类治疗在研发和应用方面的差距。



检测癌症的准确率高达 94%


CHIEF 是一个适用于弱监督组织病理学图像分析的通用机器学习框架。CHIEF 提取对癌症分类、肿瘤来源预测、基因组学预测和预后分析有用的病理成像表现。研究团队使用代表 19 个解剖部位的 60530 张全切片图像以弱监督的方式对 CHIEF 进行了预训练。


在预训练过程中,他们将全切片图像裁剪成不重叠的图像瓦片,并使用对比语言-图像预训练(CLIP)嵌入方法编码每个全切片的解剖部位信息,以获得每个解剖部位的特征向量。他们将文本和图像嵌入合并,以表示来自训练数据的异质病理信息。然后,使用 CHIEF 提取的病理成像特征直接推断癌症类型。在基因组学预测和预后预测任务中,CHIEF 特征作为为每个特定任务微调模型的基础。


图 | CHIEF 模型概述。


CHIEF 在这些任务中的表现比最先进的深度学习方法高出多达 36.1%。平均来说,CHIEF 的表现比传统方法高出 9%。


图 | CHIEF 在癌症分类、基因组学识别和生存预测任务中显著优于最先进的方法。


CHIEF 模型在病理图像分析中展现出强大的通用性和泛化能力,能够在多种癌症类型中应用于多种病理评估任务,其中包括癌症检测、肿瘤来源预测、基因组特征预测以及生存预测。


CHIEF 在代表 11 种癌症类型的 15 个数据集上实现了 0.9397 的宏观平均受试者操作特征曲线下面积(AUROC),比现有的三种深度学习方法均高出 10% 及以上。在从独立队列收集的所有五个活检数据集中,CHIEF 在包括食管、胃、结肠和前列腺在内的几种癌症类型中的 AUROCs 均大于 0.96。在使用涵盖五种癌症类型(即结肠、乳腺、子宫内膜、肺和宫颈)的七个手术切除切片集进行独立验证时,CHIEF 的 AUROCs 大于 0.90。这些结果证明了CHIEF在国际上不同来源的多样化癌症组织和样本中的泛化能力。


图 | CHIEF 的表现优于最先进的深度学习方法。








请到「今天看啥」查看全文