第1章MRI基本原理与临床应用
第一节MRI物理学原理
一、MRI的物质基础
(一)原子的结构
原子由原子核及位于其周围轨道中的电子构成。
电子带有负电荷且具有一定的质量,在原子核外做快速运动(轨道运动和自旋运动),在电子显微镜下显示电子的运动如云状,称为电子云。轨道运动产生轨道角动量和轨道磁矩,自旋运动产生自旋角动量和自旋磁矩,一般情况下轨道磁矩相对自旋磁矩可以忽略。
原子核由中子和质子构成,中子不带电荷,质子带有正电荷,质子与原子核外的电子数相等,质子和中子决定原子的质量,原子核主要决定该原子的物理特性。质子和中子如不成对,将使质子在旋转中产生角动量,一个质子的角动量约为。核磁共振就是利用这个角动量的物理特性来进行激发和采集信号的。
(二)自旋和核磁的概念
任何原子核总以一定的频率绕自身轴高速旋转,将原子核的这一特性称为自旋(spin),类似于地球的自转,由于原子核带有正电荷,原子核的自旋好似电流通过环形线圈,形成电流环路,根据法拉第电磁原理,会产生具有一定大小和方向的微小磁场,称为角动量。这种由带有正电荷的原子核自旋产生的磁场称为核磁。核磁共振成像(nuclear magnetic resonance imaging,NMRI)也称为磁共振成像(magnetic resonance imaging,MRI)。核磁共振信号是原子核产生的,不是分子、原子或电子。原子在没有外加磁场的环境中,自旋原子核的磁矩排列杂乱无章,宏观磁化矢量为零。
(三)磁性和非磁性原子核
自然界中并非所有原子核的自旋都能产生核磁,根据原子核内中子和质子的数目不同,不同的原子核产生不同的核磁效应。如果原子核内的质子数和中子数均为偶数,则这种原子核的自旋并不产生核磁,称这种原子核为非磁性原子核。反之,自旋运动能够产生核磁的原子核称为磁性原子核。磁性原子核需要符合以下条件:①中子和质子均为奇数;②中子为奇数,质子为偶数;③中子为偶数,质子为奇数。
(四)用于人体MRI的原子
人体内具有磁性的原子核比较多,人体内常见的磁性原子核见表1-1。
用于人体MRI的原子核通常为氢质子。主要原因:是人体中含量最多的原子核,约占人体中总原子核数的2/3以上;的磁化率在人体磁性原子核中是最高的。氢原子核(出)在人体中的摩尔浓度最高,达到99,而处于第二位的是,摩尔浓度为1.6,约为的1/62,且的相对磁化率仅为0.083。另外,的磁化率是最高的,以的相对磁化率为1,相对磁化率处于第二位的是199F,为0.83,但199F的摩尔浓度仅为0.0066,仅为1H的1/15000。
原子核,仅有一个质子而没有中子,人体MRI—般采用作为成像对象,除非有特殊说明,否则一般所指的MR图像即为的MR图像。
二、MRI基本原理
(一)磁感应强度
磁感应强度是指描述磁场强弱和方向的物理量,是矢量,常用符号B表示,国际通用单位为特斯拉(T),与高斯(Gs)单位的换算关系为1T=10000Gs。地球磁场的大小为0.5~0.6Gs。
(二)质子自旋和角动量
如果将含有磁性原子核的物质置于均匀的外加磁场B0中,这些杂乱无章的微观角动量会在自旋-晶格弛豫时间发生改变,角动量趋于与磁场B。方向平行。处于低能级状态的角动量与磁场B。方向趋于相同,而处于高能级状态的质子角动量与磁场B0方向趋于相反。
(三)磁矩
磁矩是所有质子角动量的矢量总和,具有大小和方向。磁矩的方向与磁场方向一致,但有一半多的质子的角动量与磁场Bo方向相同,约不足一半的质子的角动量与磁场B0方向相反,所有质子的角动量矢量总和称为磁矩,它的方向总是与外加磁场B0方向一致。磁矩是动态变化的,1h被置于外加磁场中,经过一定的时间才能达到一个动态平衡,而如果磁场发生变化,磁矩也会发生改变,在一定的时间后重新达到一个动态平衡。
(四)进动和进动频率