前面我们已经给大家介绍过TCGA数据库中样本barcode的详细组成:
TCGA样本barcode详细介绍
,现在我们来看看
如何将基因表达矩阵与样本临床信息进行合并,方便后续做 比如生存分析,基因在不同样本分期、性别、年龄分组等中的差异表达情况
。
首先我们去TGCA下载如乳腺癌的基因表达矩阵
这里使用R包
TCGAbiolinks
去TCGA官网下载数据。
1、加载包:
## download tcga data
## update: 2024-02-22
## Author: zhang juan
rm(list=ls())
# 当然,需要先去安装这个包,如果已安装就可以跳过:
if (!require("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install("TCGAbiolinks")
## load packages
library(TCGAbiolinks)
library(SummarizedExperiment)
suppressPackageStartupMessages(library(tidyverse))
2、癌症类型选择:
# 癌症类型,用 getGDCprojects()$project_id 查看所有
getGDCprojects()$project_id
# [1] "TARGET-AML" "MATCH-Z1I" "HCMI-CMDC" "MATCH-W"
# [5] "MATCH-Z1D" "MATCH-Z1A" "MATCH-U" "MATCH-Q"
# [9] "TCGA-PCPG" "MATCH-H" "MATCH-C1" "TCGA-THYM"
# [13] "MATCH-I" "MATCH-S1" "MATCH-P" "MATCH-R"
# [17] "MATCH-Z1B" "TCGA-PAAD" "TCGA-STAD" "TCGA-TGCT"
# [21] "MATCH-S2" "TCGA-SARC" "TCGA-PRAD" "TCGA-READ"
# [25] "TCGA-UCS" "TCGA-UVM" "TRIO-CRU" "VAREPOP-APOLLO"
# [29] "WCDT-MCRPC" "TARGET-ALL-P1" "REBC-THYR" "TARGET-ALL-P2"
# ...
不同缩写代表的含义可取这个地址查看:
https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/bcr-batch-codes
本次乳腺癌缩写为:
BRCA
3、下载:
# 设置query
query project = "TCGA-BRCA", # 癌症类型,用 getGDCprojects()$project_id 查看所有
data.category="Transcriptome Profiling", # 数据类别, 用getProjectSummary(project)查看所有类别
data.type ="Gene Expression Quantification", # 数据类型
workflow.type="STAR - Counts" # 工作流类型
)
## 下载数据
GDCdownload(query=query, files.per.chunk= 50, directory = "./")
下来后的数据为一个样本一个tsv文件:如
8d1641ea-7552-4d23-9298-094e0056386a.rna_seq.augmented_star_gene_counts.tsv
4、整合成一个表达矩阵:
## 整理数据并存储为 R对象
GDCprepare(query,save=T,save.filename="TCGA-BRCA.transcriptome.Rdata", directory = "./")
## 再次加载
load("TCGA-BRCA.transcriptome.Rdata")
ls()
names(assays(data))
rowdata
5、提取mRNA的SummarizedExperiment对象,根据
gene_type
取子集,太简单了!
table(rowdata$gene_type)
tcga_mrna $gene_type == "protein_coding",]
tcga_mrna_count "unstranded") # mRNA的counts矩阵
tcga_mrna_tpm "tpm_unstrand") # mRNA的tpm矩阵
tcga_mrna_fpkm "fpkm_unstrand") # mRNA的fpkm矩阵
# 添加gene_symbol, 先提取gene_name
symbol_mrna $gene_name
head(symbol_mrna)
####################################################### count值
tcga_mrna_count_symbol
# 去重复保留最大的那个
tcga_mrna_count_symbol1 %
as_tibble() %>% # tibble不支持row name,我竟然才发现!
mutate(meanrow = rowMeans(.[,-1]), .before=2) %>%
arrange(desc(meanrow)) %>%
distinct(symbol_mrna,.keep_all=T) %>%
select(-meanrow)
saveRDS(tcga_mrna_count_symbol1, file = "tcga_mrna_count_symbol.rds")
write.table(tcga_mrna_count_symbol1, file ="tcga_mrna_count_symbol.xls",row.names = F,sep = "\t",quote = F)
####################################################### tpm值
tcga_mrna_tpm_symbol
# 去重复保留最大的那个
tcga_mrna_tpm_symbol1 %
as_tibble() %>% # tibble不支持row name,我竟然才发现!
mutate(meanrow = rowMeans(.[,-1]), .before=2) %>%
arrange(desc(meanrow)) %>%
distinct(symbol_mrna,.keep_all=T) %>%
select(-meanrow)
saveRDS(tcga_mrna_tpm_symbol1, file = "tcga_mrna_tpm_symbol.rds")
write.table(tcga_mrna_tpm_symbol1, file = "tcga_mrna_tpm_symbol.xls",row.names = F,sep = "\t",quote = F)
####################################################### fpkm值
tcga_mrna_fpkm_symbol
# 去重复保留最大的那个
tcga_mrna_fpkm_symbol1 %
as_tibble() %>% # tibble不支持row name,我竟然才发现!
mutate(meanrow = rowMeans(.[,-1]), .before=2) %>%
arrange(desc(meanrow)) %>%
distinct(symbol_mrna,.keep_all=T) %>%
select(-meanrow)
saveRDS(tcga_mrna_fpkm_symbol1, file = "tcga_mrna_fpkm_symbol.rds")
write.table(tcga_mrna_fpkm_symbol1, file = "tcga_mrna_fpkm_symbol.xls",row.names = F,sep = "\t",quote = F)
接着下载样本临床信息
1、同样首先需要联网 进行 query:
##############################################################################
########################## 3.批量下载临床数据 ###################################
##############################################################################
# ref: https://bioconductor.org/packages/release/bioc/vignettes/TCGAbiolinks/inst/doc/clinical.html
query project = "TCGA-BRCA",
data.category = "Clinical",
data.format = "bcr xml"
)
save(query, file = "TCGA-BRCA.clinic.query.rdata")
# 下载到当前目录
GDCdownload(query, files.per.chunk= 50, directory = "./")
2、对下载的数据进行整理:
clinical "patient", directory = "./")
clinical.follow_up "follow_up", directory = "./")
clinical.stage_event "stage_event", directory = "./")
clinical.drug "drug", directory = "./")
clinical.radiation "radiation", directory = "./")
clinical.admin "admin", directory = "./")
# 保存
saveRDS(clinical, file = "TCGA-BRCA.clinical_patient.rds")
saveRDS(clinical.admin, file = "TCGA-BRCA.clinical_admin.rds")
saveRDS(clinical.drug, file = "TCGA-BRCA.clinical_drug.rds")
saveRDS(clinical.follow_up, file = "TCGA-BRCA.clinical_follow_up.rds")
saveRDS(clinical.radiation, file = "TCGA-BRCA.clinical_radiation.rds")
saveRDS(clinical.stage_event, file = "TCGA-BRCA.clinical_stage_event.rds")
现在将基因表达矩阵与临床信息整合在一起
先看看各自的样本ID名,根据前面的介绍《
TCGA样本barcode详细介绍
》,可以看到
表达矩阵里面的是样本ID
,
临床信息中是patient ID
,
一个病人可能会取多个样本
,比如同时存在正常样本与肿瘤样本,也可能同时具有好几个肿瘤样本:
# 表达矩阵 样本名
mrna_fpkm "tcga_mrna_fpkm_symbol.rds")
head(colnames(mrna_fpkm))
# [1] "symbol_mrna" "TCGA-5L-AAT0-01A-12R-A41B-07" "TCGA-A2-A04U-01A-11R-A115-07" "TCGA-AN-A04A-01A-21R-A034-07"
# [5] "TCGA-A7-A13D-01A-13R-A12P-07" "TCGA-BH-A201-01A-11R-A14M-07"
# 临床信息
clinical "TCGA-BRCA.clinical_patient.rds")
colnames(clinical)
head(clinical[,1:6])
# 我们后面相比较不同病理分期间某个基因表达差异,这里过滤一下样本
clinical "bcr_patient_barcode", "stage_event_pathologic_stage")]
colnames(clinical) "bcr_patient_barcode", "pathologic_stage")
str(clinical)
table(clinical$pathologic_stage)
clinical$pathologic_stage $pathologic_stage)
clinical $pathologic_stage!="",]
clinical head(clinical)
# 变成 stage I 、II、III、IV、
clinical$stage $pathologic_stage
clinical$stage[grepl("Stage I$|Stage IA$|Stage IB$",clinical$pathologic_stage)] "Stage I"
clinical$stage[grepl("Stage II$|Stage IIA$|Stage IIB$",clinical$pathologic_stage)] "Stage II"
clinical$stage[grepl("Stage III$|Stage IIIA$|Stage IIIB$|Stage IIIC$",clinical$pathologic_stage)] "Stage III"
table(clinical$stage)
table(clinical$pathologic_stage,clinical$stage)
clinical$stage $stage, levels = c("Stage I","Stage II","Stage III","Stage IV"))
那么,这里对应的时候,
一般可以先将样本分为肿瘤样本与正常样本,看看肿瘤样本中 某个基因表达的高低分组 生存曲线KM差异
:
肿瘤样本的编号一般为样本
barcode中的第14-15位编码字
符:
01-09为肿瘤样本,10以及10以上的为对照样本
。肿瘤样本里面又有很多细小的分类:
https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/sample-type-codes
我们这里直接提取
01A类的实体瘤样本
:
# 提取 01A类的实体瘤样本