机器学习的学习曲线相当陡峭,需要同时专注于数据处理、模型构建以及结果优化,颠覆了我们以往对数据处理的理解。作为工程业界人士来说,没有机器学习理论基础的支持,几乎无法应用相关的工具;而没有工程实践的尝试,又很难体系化理解理论基础——入门着实不易
编辑 | abby
官网 | www.datayuan.cn
微信公众号ID | datayuancn
技术发展的过程就是人类在探索自身创造能力边界的过程,而人工智能无疑是最重要以及影响最深远的领域之一。
AlphaGo及其马甲Master在围棋领域大胜人类顶尖高手之后,在智力分析领域人类优势开始出现裂痕。而在“听说读写”方面,不管是语音识别、语音合成、机器翻译,还是图像识别、物体识别,甚至是自动文章生成、自动曲谱生成、艺术图像合成方面,机器已经开始做得比人类更为强大。深度学习在工程领域的突破,使得“机器学习”走出了实验室,进入到工程领域,人类开始重新审视机器能带来的更多可能性。
正如2007年以iPhone为代表的智能手机出现,10年之间已经颠覆了诸多商业领域、影响了人类的生活方式一样,深度学习也必将如此,作为一名技术人,必须理解和跟上行业和时代的变革!
在过去的计算机技术演变过程中,数据主线(展示、逻辑、存储)、架构主线(C/S,B/S,SASS)、语言框架平台主线(语法、库、框架、操作系统、平台)的变迁基本有迹可循,易于举一反三,迁移学习曲线相对平缓。而机器学习的学习曲线相当陡峭,需要同时专注于数据处理、模型构建以及结果优化,颠覆了我们以往对数据处理的理解。作为工程业界人士来说,没有机器学习理论基础的支持,几乎无法应用相关的工具;而没有工程实践的尝试,又很难体系化理解理论基础——入门着实不易。
今天,小编将为大家推荐一本深度学习的入门级图书——《深度学习原理与TensorFlow实践》
本书主要介绍了深度学习的基础原理和TensorFlow系统基本使用方法。TensorFlow是目前机器学习、深度学习领域最优秀的计算系统之一,《深度学习原理与TensorFlow实践》结合实例介绍了使用TensorFlow开发机器学习应用的详细方法和步骤。同时,《深度学习原理与TensorFlow实践》着重讲解了用于图像识别的卷积神经网络和用于自然语言处理的循环神经网络的理论知识及其TensorFlow实现方法,并结合实际场景和例子描述了深度学习技术的应用范围与效果。
《深度学习原理与TensorFlow实践》非常适合对机器学习、深度学习感兴趣的读者,或是对深度学习理论有所了解,希望尝试更多工程实践的读者,抑或是对工程产品有较多经验,希望学习深度学习理论的读者。
本文从内容上共分为7个章节:
第1章:介绍了深度学习的由来以及发展趋势,简要说明了人工智能、机器学习、深度学习等名词概念之间的联系。
第2章:主要介绍了TensorFlow系统的基础知识和一些重要概念。
第3章:通过对Kaggle竞赛平台上的Titanic问题的求解实例,介绍了TensorFlow系统的基本用法,并简要介绍了机器学习问题中的一些常用的处理技巧。