对于深度学习,我也是一个初学者,能力有限,但这些的确是我现在的真实想法,我也会按这个思路去尝试。
我是一个好奇心很重的人。
深度学习刚开始流行的时候,我就做过简单的学习。当时我的结论是短期内,深度学习只能在弱智能徘徊,很难进展到强智能。
这个结论在今天看来,也不算过时。但真正被深度学习给 Shock 到,是去年和某教育 APP 的 CEO 同学聊天。他告诉我,在教育这个垂直领域,他们的语音识别率已经比讯飞要高了,依赖于大量的数据;更 NB 的是,加上 NLP,他们的 AI 已经可以帮老师改主观题了。主观题啊,就是数学的问答题,语文的作文。
这让我开始重新思考弱智能。
完全依靠强智能的应用场景,会产生很多问题。比如自动驾驶,要想在中国这种各种奇葩状况层出不穷的交通环境下运行,一时半会儿是不行。即使是一个看起来简单的问答机器人,也没一家真正做好,你多问 siri 几句,她很快就晕了。
经常关注我微博同学会知道,我最喜欢说的一句话就是:「能自动化的,要自动化;不能自动化的,要半自动化」。
在人工智能上,这个法则似乎依然是有效的。既然现在强智能还不够强,那么为什么我们不用弱智能+人工确认的方式,来实现「半智能化」呢:用机器帮你做预选,你来做最终选择,虽然依然包含了人工干预,但却可以把生产效率提升几十倍。
有同学和我说,找不到应用深度学习的场景,这是因为太执着于强智能,想让机器独立处理所有事情;如果使用「半自动化」的思路,你会发现遍地都是场景。
最典型的场景就是「按需求进行组合搭配」。拿今天小程序举例,小程序在框架层上,将功能分隔到了page 的粒度,这使得小程序的组件会很好的被重用;而在设计上,小程序提供了统一的官方指导风格,所以不会出现太多个性化的东西。
我需要一个用户资料管理, xpm install user-profile;我需要动态 Feed 流,xpm install feed-timeline 。
然后这货就喊着要去做,还在 GitHub 上开了个坑,据说 SDK 已经写完,安装器年前能开始内测。https://git.oschina.net/xpmjs/xpm
然后我告诉他,你得赶紧做,从长远看,通用应用最后是不太值钱的,因为很快就有开源项目把它做得很好。真正值钱的是,下沉到行业里边的应用。比如说吧,同样是用户资料页,房地产行业的、猎头行业的以及技术社区的会完全不一样。但区别也就是添加几个行业特定的字段而已。 大量的「二次开发」工作,才是最为琐碎又最为挣钱的。
这就是典型的可以用上深度学习的场景。通过抓取对应行业的 H5 页面,我们很快就可以把各个行业需要哪些可能的字段给整理出来,然后把这些交给机器进行学习,当再有新的需求进来的时候,机器就可以自动配好预设字段。机器会出错么?当然。但哪怕是80%的准确率,也已经可以节省掉好几个程序员了。
为什么我要学深度学习? 因为这背后是 TM 白花花的银子。