专栏名称: 算法爱好者
算法是程序员的内功!伯乐在线旗下账号「算法爱好者」专注分享算法相关文章、工具资源和算法题,帮程序员修炼内功。
目录
相关文章推荐
格斗迷  ·  拳王泰森最强KO合集! ·  2 天前  
格斗迷  ·  拳王泰森最强KO合集! ·  2 天前  
算法爱好者  ·  世界上最伟大最邪恶的软件发明,超过 10 ... ·  2 天前  
光伏资讯  ·  来看一个10kV并网的光伏项目现场! ·  2 天前  
光伏资讯  ·  来看一个10kV并网的光伏项目现场! ·  2 天前  
九章算法  ·  找工而已,千万不要太“老实” ·  6 天前  
九章算法  ·  给在职员工面试!Meta竟是为了…100%裁员! ·  1 周前  
51好读  ›  专栏  ›  算法爱好者

算法数据结构-B树

算法爱好者  · 公众号  · 算法  · 2017-05-31 20:11

正文

(点击上方公众号,可快速关注)


来源:蘑菇先生

cnblogs.com/mushroom/p/4100087.html

如有好文章投稿,请点击 → 这里了解详情


介绍


B树的目的为了硬盘快速读取数据(降低IO操作次树)而设计的一种平衡的多路查找树。目前大多数据库及文件索引,都是使用B树或变形来存储实现。


为什么B树效率高


在大规模数据存储操作中,由于无法一次性加载到内存里。所以避免不了发生内外存交换。所以次数越少,效率表现也越高。


来看下面这张图:




这是个典型的b树结构,初始因子为1000,高度仅为3的b树,就可以存储1002001000的数据了。


假设要查询最后一个数据:


  • 从硬盘加载根节点搜索,IO一次。

  • 根据根节点的指针信息,去加载第二层的节点, IO一次。

  • 重复2,IO一次。


IO只用了3次,就查询了需要的数据,所以说B树效率是非常高的。


B树的节点,在硬盘里表现为:柱面里的页(page)或盘块(block) ,如果把索引持久化到内存,只需要一次就够了。


B树的高效的前提是数据已排序。


B树结构



这是B树存储在硬盘的逻辑结构图。


其中根节点中17,35在称为关键字(key) ,实际中往往附带更多复杂类型数据。


可以看出一个节点包含 keys  ChildNotePointer  2部分信息。



根据这张图介绍下b树的基础定义:


这是颗5阶B树的图,阶简写m。


  1. 树中每个结点最多含有m个子节点(m>=2)。

  2. 每个内节点至少 [ceil(m / 2)] 个子节点。  内节点即非根节点非页子节点,也可以叫中间节点。

  3. 关键字key的数量   [ceil(m / 2)-1]<= n <= m-1,关键字按递增排序。

  4. 每个叶节点具有相同的深度,即树的高度h,而且不包含关键字信息。


上图也可称为最小度数为3的b树,(degree) ,简写t。  


t其实是上面第二条定义中 [ceil(m / 2)] 的值,即t=[ceil(m/2)], 3=ceil(5/2) 。 


  1. 每个非根节点至少有t-1个关键字,非根内节点至少有t个子节点。 t称为度数(degree),t>=2  。

  2. 每个节点至多有2t-1关键字,每个内节点最多有2t个子节点。

  3. 每个叶节点具有相同的深度,即树的高度h,而且不包含关键字信息。


度和阶都是描述子节点的数量的。

算法导论译版中是用度来描述的。

数据结构与算法分析是用阶来描述,网上大多也是。

下面简单的描述实现逻辑。


搜索:从根节点搜索,找到返回,找不到递归子节点。一直搜索到叶子节点,找到返回,找不到则说明key不存在。


//伪代码
entry BTreeSearch(node, key) {
    if(node == null)
           return null;
    for(int i = 0; i < node.keys.length; i++)
    {
        if(node.keys[i] == key)
               return node.data[i];
    }
    return BTreeSearch(ChildrenNode[i].node,key);
}
 
var  entry = BTreeSearch(root, my_key);


插入:根节点插入,不满直接插入。节点满进行分裂,再满递归分裂。



删除:查询到节点,然后进行删除操作,不满足B数节点的定义则进行节点合并。



更新:查询到子节点,更新数据。


B树缺点


从上面的得知,在查询单条数据是非常快的。但如果范围查的话,b树每次都要从根节点查询一遍。


所以在实际应用中,往往采用b树的变形,b+树来存储,只有叶子节点存储数据,每个叶子节点都指向下一个。


参考博客 http://blog.csdn.net/v_JULY_v/article/details/6530142/



觉得本文有帮助?请分享给更多人

关注「算法爱好者」,修炼编程内功