专栏名称: 机器学习研究会
机器学习研究会是北京大学大数据与机器学习创新中心旗下的学生组织,旨在构建一个机器学习从事者交流的平台。除了及时分享领域资讯外,协会还会举办各种业界巨头/学术神牛讲座、学术大牛沙龙分享会、real data 创新竞赛等活动。
目录
相关文章推荐
宝玉xp  ·  MaskGCT:让AI说话更像人的新技术你有 ... ·  3 天前  
爱可可-爱生活  ·  今日推介(第1568期):锐度最小化与简洁性 ... ·  6 天前  
51好读  ›  专栏  ›  机器学习研究会

【推荐】CVPR 2017论文:3DMatch:从RGB-D重建学习本地几何描述符(附代码)

机器学习研究会  · 公众号  · AI  · 2017-05-19 19:53

正文



点击上方“机器学习研究会”可以订阅哦


摘要
 

转自:视觉机器人

CVPR 2017 Oral Presentation论文《3DMatch: Learning Local Geometric Descriptors from RGB-D Reconstructions》摘要:

由于3D扫描数据的嘈杂、低分辨率和不完整的特性,现实世界深度图像中的匹配局部几何特征,是一项具有挑战性的任务。这些困难限制了当前最先进的方法的性能,这些方法通常基于几何属性上的直方图。在本文中,我们提出了3DMatch,一个数据驱动模型,学习一个局部体积补丁描述符,来建立部分3D数据之间的对应关系。为了收集我们模型的训练数据,我们提出了一种无监督的特征学习方法,利用现有RGB-D重建中发现的数百万个对应标签。实验表明,我们的描述符不仅能够匹配用于重建的新场景中的局部几何,还可以将其归纳为不同的任务和空间尺度(例如,亚马逊采摘挑战的实例级对象模型对齐和网格表面对应)。结果表明,3DMatch一直优于其他最先进的方法。

英文摘要:
Matching local geometric features on real-world depth images is a challenging task due to the noisy, low-resolution, and incomplete nature of 3D scan data. These difficulties limit the performance of current state-of-art methods, which are typically based on histograms over geometric properties. In this paper, we present 3DMatch, a data-driven model that learns a local volumetric patch descriptor for establishing correspondences between partial 3D data. To amass training data for our model, we propose an unsupervised feature learning method that leverages the millions of correspondence labels found in existing RGB-D reconstructions. Experiments show that our descriptor is not only able to match local geometry in new scenes for reconstruction, but also generalize to different tasks and spatial scales (e.g. instance-level object model alignment for the Amazon Picking Challenge, and mesh surface correspondence). Results show that 3DMatch consistently outperforms other state-of-the-art approaches by a significant margin.               


Overview

From existing RGB-D reconstructions (a), we extract local 3D patches and correspondence labels from scans of different views (b). We collect pairs of matching and non-matching local 3D patches converted into a volumetric representation (c) to train a 3D ConvNet-based descriptor (d). This geometric descriptor can be used to establish correspondences for matching 3D geometry in various applications (e) such as reconstruction, model alignment, and surface correspondence.                


项目主页:

http://3dmatch.cs.princeton.edu/


原文链接:

http://weibo.com/5501429448/F3Pg7oPCx?ref=home&rid=9_0_202_2666934447555772670&type=comment

“完整内容”请点击【阅读原文】
↓↓↓