大家好,我是东哥。
今天来为大家介绍几个
Pandas
读取数据以及保存数据的方法,毕竟我们很多时候需要读取各种形式的数据,以及将我们需要将所做的统计分析保存成特定的格式。
我们大致会说到的方法有:
read_sql()
与
to_sql()
我们一般读取数据都是从数据库中来读取的,因此可以在
read_sql()
方法中填入对应的
sql
语句然后来读取我们想要的数据,
pd.read_sql(sql, con, index_col=None,
coerce_float=True, params=None,
parse_dates=None,
columns=None, chunksize=None)
参数详解如下:
-
-
con: 连接SQL数据库的Engine,一般用SQLAlchemy或者是PyMysql之类的模块来建立
-
-
coerce_float:将数字形式的字符串直接以float型读入
-
parse_dates: 将某一列日期型字符串传唤为datatime型数据,可以直接提供需要转换的列名以默认的日期形式转换,或者也可以提供字典形式的列名和转换日期的格式,
我们用
PyMysql
这个模块来连接数据库,并且读取数据库当中的数据,首先我们导入所需要的模块,并且建立起与数据库的连接
import pandas as pd
from pymysql import *
conn = connect(host='localhost', port=3306, database='database_name',
user='', password='', charset='utf8')
我们简单地写一条
SQL
命令来读取数据库当中的数据,并且用read_sql()方法来读取数据
sql_cmd = "SELECT * FROM table_name"
df = pd.read_sql(sql_cmd, conn)
df.head()
上面提到
read_sql()
方法当中
parse_dates
参数可以对日期格式的数据进行处理,那我们来试一下其作用
sql_cmd_2 = "SELECT * FROM test_date"
df_1 = pd.read_sql(sql_cmd_2, conn)
df_1.head()
output
number date_columns
0 1 2021-11-11
1 2 2021-10-01
2 3 2021-11-10
我们来看一个各个列的数据类型
df_1.info()
output
'pandas.core.frame.DataFrame'>
RangeIndex: 3 entries, 0 to 2
Data columns (total 2 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 number 3 non-null int64
1 date_columns 3 non-null object
dtypes: int64(1), object(1)
memory usage: 176.0+ bytes
正常默认情况下,
date_columns
这一列也是被当做是
String
类型的数据,要是我们通过
parse_dates
参数将日期解析应用与该列
df_2 = pd.read_sql(sql_cmd_2, conn, parse_dates="date_columns")
df_2.info()
output
'pandas.core.frame.DataFrame'>
RangeIndex: 3 entries, 0 to 2
Data columns (total 2 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 number 3 non-null int64
1 date_columns 3 non-null datetime64[ns]
dtypes: datetime64[ns](1), int64(1)
memory usage: 176.0 bytes
就转换成了相对应的日期格式,当然我们还可以采用上面提到的另外一种格式
parse_dates={"date_column": {"format": "%d/%m/%y"}})
to_sql()
方法
我们来看一下
to_sql()
方法,作用是将
DataFrame
当中的数据存放到数据库当中,请看下面的示例代码,我们创建一个基于内存的
SQLite
数据库
from sqlalchemy import create_engine
engine = create_engine('sqlite://', echo=False)
然后我们创建一个用于测试的数据集,并且存放到该数据库当中,
df = pd.DataFrame({'num': [1, 3, 5]})
df.to_sql('nums', con=engine)
查看一下是否存取成功了
engine.execute("SELECT * FROM nums").fetchall()
output
[(0, 1), (1, 3), (2, 5)]
我们可以尝试着往里面添加数据
df2 = pd.DataFrame({'num': [7, 9, 11]})
df2.to_sql('nums', con=engine, if_exists='append')
engine.execute("SELECT * FROM nums").fetchall()
output
[(0, 1), (1, 3), (2, 5), (0, 7), (1, 9), (2, 11)]
注意到上面的
if_exists
参数上面填的是
append
,意味着添加新数据进去,当然我们也可以将原有的数据替换掉,将
append
替换成
replace
df2.to_sql('nums', con=engine, if_exists='replace')
engine.execute("SELECT * FROM nums").fetchall()
output
[(0, 7), (1, 9), (2, 11)]
from_dict()
方法和
to_dict()
方法
有时候我们的数据是以字典的形式存储的,有对应的键值对,我们如何根据字典当中的数据来创立
DataFrame
,假设
a_dict = {
'学校': '清华大学',
'地理位置': '北京',
'排名': 1
}
一种方法是调用
json_normalize()
方法,代码如下
df = pd.json_normalize(a_dict)
output
学校 地理位置 排名
0 清华大学 北京 1
当然我们直接调用
pd.DataFrame()
方法也是可以的
df = pd.DataFrame(json_list, index = [0])
output
学校 地理位置 排名
0 清华大学 北京 1
当然我们还可以用
from_dict()
方法,代码如下
df = pd.DataFrame.from_dict(a_dict,orient='index').T
output
学校 地理位置 排名
0 清华大学 北京 1
这里最值得注意的是
orient
参数,用来指定字典当中的键是用来做行索引还是列索引,请看下面两个例子
data = {'col_1': [1, 2, 3, 4],
'col_2': ['A', 'B', 'C', 'D']}
我们将
orient
参数设置为
columns
,将当中的键当做是列名
df = pd.DataFrame.from_dict(data, orient='columns')
output
col_1 col_2
0 1 A
1 2 B
2 3 C
3 4 D
当然我们也可以将其作为是行索引,将
orient
设置为是
index
df = pd.DataFrame.from_dict(data, orient='index')
output
0 1 2 3
col_1 1 2 3 4
col_2 A B C D
to_dict()
方法
语法如下:
df.to_dict(orient='dict')
针对
orient
参数,一般可以填这几种形式
一种是默认的
dict
,代码如下
df = pd.DataFrame({'shape': ['square', 'circle', 'triangle'],
'degrees': [360, 360, 180],
'sides': [4, 5, 3]})
df.to_dict(orient='dict')
output
{'shape': {0: 'square', 1: 'circle', 2: 'triangle'}, 'degrees': {0: 360, 1: 360, 2: 180}, 'sides': {0: 4, 1: 5, 2: 3}}
也可以是
list
,代码如下
df.to_dict(orient='list')
output
{'shape': ['square', 'circle', 'triangle'], 'degrees': [360, 360, 180], 'sides': [4, 5, 3]}
除此之外,还有
split
,代码如下
df.to_dict(orient='split')
output
{'index': [0, 1, 2], 'columns': ['shape', 'degrees', 'sides'], 'data': [['square', 360, 4], ['circle', 360, 5], ['triangle', 180, 3]]}
还有
records
,代码如下
df.to_dict(orient='records')
output
[{'shape'
: 'square', 'degrees': 360, 'sides': 4}, {'shape': 'circle', 'degrees': 360, 'sides': 5}, {'shape': 'triangle', 'degrees': 180, 'sides': 3}]
最后一种是
index
,代码如下
df.to_dict(orient='index')
output
{0: {'shape': 'square', 'degrees': 360, 'sides': 4}, 1: {'shape': 'circle', 'degrees': 360, 'sides': 5}, 2: {'shape': 'triangle', 'degrees': 180, 'sides': 3}}
read_json()
方法和
to_json()
方法
我们经常也会在实际工作与学习当中遇到需要去处理
JSON
格式数据的情况,我们用
Pandas
模块当中的
read_json()
方法来进行处理,我们来看一下该方法中常用到的参数
orient:对应JSON字符串的格式主要有
-
split
: 格式类似于:
{index: [index], columns: [columns], data: [values]}
例如我们的JSON字符串长这样
a = '{"index":[1,2,3],"columns":["a","b"],"data":[[1,3],[2,8],[3,9]]}'
df = pd.read_json(a, orient='split')
output
a b
1 1 3
2 2 8
3 3 9
-
records
: 格式类似于:
[{column: value}, ... , {column: value}]
例如我们的JSON字符串长这样
a = '[{"name":"Tom","age":"18"},{"name":"Amy","age":"20"},{"name":"John","age":"17"}]'
df_1 = pd.read_json(a, orient='records')
output
name age
0 Tom 18
1 Amy 20
2 John 17
-
index
: 格式类似于:
{index: {column: value}}
例如我们的JSON字符串长这样
a = '{"index_1":{"name":"John","age":20},"index_2":{"name":"Tom","age":30},"index_3":{"name":"Jason","age":50}}'
df_1 = pd.read_json(a, orient='index')
output
name age
index_1 John 20
index_2 Tom 30
index_3 Jason 50
-
columns
: 格式类似于:
{column: {index: value}}
我们要是将上面的
index
变成
columns
,就变成
df_1 = pd.read_json(a, orient='columns')
output
index_1 index_2 index_3
name John Tom Jason
age 20 30 50
例如我们的JSON字符串长这样
v='[["a",1],["b",2],["c", 3]]'
df_1 = pd.read_json(v, orient="values")
output
0 1
0 a 1
1 b 2
2 c 3
to_json()
方法
将
DataFrame
数据对象输出成
JSON
字符串,可以使用
to_json()
方法来实现,其中
orient
参数可以输出不同格式的字符串,用法和上面的大致相同,这里就不做过多的赘述
read_html()
方法和
to_html()
方法
有时候我们需要抓取网页上面的一个表格信息,相比较使用
Xpath
或者是
Beautifulsoup
,我们可以使用
pandas
当中已经封装好的函数
read_html
来快速地进行获取,例如我们通过它来抓取菜鸟教程Python网站上面的一部分内容
url = "https://www.runoob.com/python/python-exceptions.html"
dfs = pd.read_html(url, header=None, encoding='utf-8')
返回的是一个
list
的
DataFrame
对象
df = dfs[0]
df.head()
output
异常名称 描述
0 NaN NaN
1 BaseException 所有异常的基类
2 SystemExit 解释器请求退出
3 KeyboardInterrupt 用户中断执行(通常是输入^C)
4 Exception 常规错误的基类
当然
read_html()
方法也支持读取
HTML
形式的表格,我们先来生成一个类似这样的表格,通过
to_html()
方法
df = pd.DataFrame(np.random.randn(3, 3))
df.to_html("test_1.html")
当然这个
HTML
形式的表格长这个样子
然后我们再通过
read_html
方法读取该文件,
dfs = pd.read_html("test_1.html"
)
dfs[0]
read_csv()
方法和
to_csv()
方法
read_csv()
方法
read_csv()
方法是最常被用到的
pandas
读取数据的方法之一,其中我们经常用到的参数有
-
filepath_or_buffer: 数据输入的路径,可以是文件的路径的形式,例如
pd.read_csv('data.csv')
output
num1 num2 num3 num4
0 1 2 3 4
1 6 12 7 9
2 11 13 15 18
3 12 10 16 18
也可以是URL,如果访问该URL会返回一个文件的话
pd.read_csv("http://...../..../data.csv")
-
sep: 读取
csv
文件时指定的分隔符,默认为逗号,需要注意的是:“csv文件的分隔符”要和“我们读取csv文件时指定的分隔符”保持一致
假设我们的数据集,
csv
文件当中的分隔符从逗号改成了"\t",需要将
sep
参数也做相应的设定
pd.read_csv('data.csv', sep='\t')
-
index_col: 我们在读取文件之后,可以指定某一列作为
DataFrame
的索引
pd.read_csv('data.csv', index_col="num1")
output
num2 num3 num4
num1
1 2 3 4
6 12 7 9
11 13 15 18
12 10 16 18
除了指定单个列,我们还可以指定多个列,例如
df = pd.read_csv("data.csv", index_col=["num1", "num2"])
output
num3 num4
num1 num2
1 2 3 4
6 12 7 9
11 13 15 18
12 10 16 18
-
usecols:如果数据集当中的列很多,而我们并不想要全部的列、而是只要指定的列就可以,就可以使用这个参数
pd.read_csv('data.csv', usecols=["列名1", "列名2", ....])
output
num1 num2
0 1 2
1 6 12
2 11 13
3 12 10
除了指定列名之外,也可以通过索引来选择想要的列,示例代码如下
df = pd.read_csv("data.csv", usecols = [0, 1, 2])
output
num1 num2 num3
0 1 2 3
1 6 12 7
2 11 13 15
3 12 10 16
另外usecols参数还有一个比较好玩的地方在于它能够接收一个函数,将列名作为参数传递到该函数中调用,要是满足条件的,就选中该列,反之则不选择该列
# 选择列名的长度大于 4 的列
pd.read_csv('girl.csv', usecols=lambda x: len(x) > 4)
-
prefix: 当导入的数据没有header的时候,可以用来给列名添加前缀
df = pd.read_csv("data.csv", header = None)
output
0 1 2 3
0 num1 num2 num3 num4
1 1 2 3 4
2 6 12 7 9
3 11 13 15 18
4 12 10 16 18
如果我们将
header
设为None,
pandas
则会自动生成表头0, 1, 2, 3..., 然后我们设置
prefix
参数为表头添加前缀
df = pd.read_csv("data.csv", prefix="test_", header = None)
output
test_0 test_1 test_2 test_3
0 num1 num2 num3 num4
1 1 2 3 4
2 6 12 7 9
3 11 13 15 18
4 12 10 16 18
-
skiprows: 过滤掉哪些行,参数当中填行的索引
代码如下:
df = pd.read_csv("data.csv", skiprows=[0, 1])
output
6 12 7 9
0 11 13 15 18
1 12 10 16 18
上面的代码过滤掉了前两行的数据,直接将第三行与第四行的数据输出,当然我们也可以看到第二行的数据被当成是了表头
-
nrows: 该参数设置一次性读入的文件行数,对于读取大文件时非常有用,比如 16G 内存的PC无法容纳几百G的大文件
代码如下:
df = pd.read_csv("data.csv", nrows=2)
output
num1 num2 num3 num4
0 1 2 3 4
1 6 12 7 9
to_csv()
方法
该方法主要是用于将
DataFrame
写入
csv
文件当中,示例代码如下
df.to_csv("文件名.csv", index = False)
我们还能够输出到
zip
文件的格式,代码如下
df = pd.read_csv("data.csv")
compression_opts = dict(method='zip',
archive_name='output.csv')
df.to_csv('output.zip', index=False,
compression=compression_opts)
read_excel()
方法和
to_excel()
方法
read_excel()
方法
要是我们的数据是存放在
excel
当中就可以使用
read_excel()
方法,该方法中的参数和上面提到的
read_csv()
方法相差不多,这里就不做过多的赘述,我们直接来看代码
df = pd.read_excel("test.xlsx")
-
dtype: 该参数能够对指定某一列的数据类型加以设定
df = pd.read_excel("test.xlsx", dtype={'Name': str, 'Value': float})
output
Name Value
0 name1 1.0
1 name2 2.0
2 name3 3.0
3 name4 4.0
-
sheet_name: 对于读取
excel
当中的哪一个
sheet
当中的数据加以设定
df = pd.read_excel("test.xlsx", sheet_name="Sheet3")
output
Name Value
0 name1 10
1 name2 10
2 name3 20
3 name4 30
当然我们要是想一次性读取多个
Sheet
当中的数据也是可以的,最后返回的数据是以
dict
形式返回的
df = pd.read_excel("test.xlsx", sheet_name=["Sheet1", "Sheet3"])
output
{'Sheet1': Name Value
0 name1 1
1 name2 2
2 name3 3
3 name4 4, 'Sheet3': Name Value
0 name1 10
1 name2 10
2 name3 20
3 name4 30}
例如我们只想要
Sheet1
的数据,可以这么来做
df1.get("Sheet1")
output
Name Value
0 name1 1
1 name2 2
2 name3 3
3 name4 4
to_excel()
方法
将
DataFrame
对象写入
Excel
表格,除此之外还有
ExcelWriter()
方法也有着异曲同工的作用,代码如下
df1 = pd.DataFrame([['A', 'B'], ['C', 'D']],
index=['Row 1', 'Row 2'],
columns=['Col 1', 'Col 2'])
df1.to_excel("output.xlsx")
当然我们还可以指定
Sheet
的名称
df1.to_excel("output.xlsx", sheet_name='Sheet_Name_1_1_1'