图1. (a) Schematic illustration of the modification of GO by RF-plasma, (b) simulated 2D axisymmetric geometry.
图2. (a) XRD spectra of GO, rGO-5, rGO-10, rGO-15, and rGO-20; (b) FT-IR spectra of GO, rGO-5, rGO-10, rGO-15, and rGO-20 samples; (c) spectra of Raman for GO, rGO-5, rGO-10, rGO-15, and rGO-20 samples; (d) TG and DTG of GO, rGO-5, rGO-10, rGO-15, and rGO-20.
图3. C 1s spectra of (a)GO, (b) rGO-5, (c) rGO-10, (d) rGO-15, and (e) rGO-20, in XPS (f) survey spectra of GO, rGO-5, rGO-10, rGO-15, and rGO-20 (g) OES from 400 to 830 nm in the Ar/H
2
plasma.
图4. SEM images of (a–c) rGO; (d–f) rGO-5; (g–i) rGO-10; (j–l) rGO-15; and (m–o) rGO-20.
图
5. Spatial distribution of electromagnetic fields and the temperature within the plasma. (a) Magnetic flux density, (b) electrostatic electric field, (c) gas temperature, (d) electron temperature, (e) electron density, (f) Ar density, (g) H
+
2
* density, and (h) H density of reaction chamber.
图6. (a) Real parts of the complex permittivity; (b) imaginary parts of the complex permittivity; (c) dielectric loss tangents; (d,e) three-dimensional representations of the reflection loss (RL) values of rGO-10 and rGO-15; (f,g) two-dimensional projection images of the RL values of rGO-10 and rGO-15; (h) the |
Z
in
/
Z
0
| of each sample; (i) schematic diagram of the electromagnetic wave attenuation mechanism for different structures.
图7
. (a) Polar curves of RCS value for rGO-10 and PEC; (b) RCS curves of rGO-10 and PEC.
总之,利用射频等离子体获得了还原度可控的 rGO。与化学合成方法相比,等离子体为制备石墨烯基 EAM 提供了一种快速、高效和环保的方法。此外,等离子体中的反应物,包括电子和高密度 H 原子,以及射频加热,促进了 GO 中袋状结构和缺陷的形成,这在增强波吸收性能方面发挥了重要作用。我们的研究结果表明,通过对 GO 进行等离子体处理,可在 15 分钟内实现 7.14 GHz 频率下 -38.65 dB 的最小反射损耗和 5.13 GHz 的宽有效吸收带宽,厚度为 1.9 mm。与合成石墨烯基微波吸收体的传统方法相比,我们的等离子体处理方法具有以下几个优势:它可以在几分钟内快速脱氧,无需使用刺激性化学物质,使处理过程更快、更环保。等离子体诱导的袋状形态可通过增加多重反射和散射来增强微波吸收,同时还能在较低的质量负荷下实现出色的阻抗匹配。此外,在等离子处理过程中引入的缺陷可作为极化中心改善介质损耗,与其他二维材料相比,缺陷类型和密度的控制能力更强,从而在更宽的频率范围内实现卓越的吸收性能。这项工作揭示了等离子处理技术在连续绿色生产EAM 方面的潜在应用。