专栏名称: 互联网分析沙龙
为您提供专业的商业模式、产品、数据、用户、电子商务、社会化媒体、移动互联网等深度分析的信息网站!秉承“信息交流、深度分享”的理念,是为用户缩短获取信息途径,提升阅读质量的深度分析网站。
目录
相关文章推荐
新浪科技  ·  【#安克创新494人年入过百万# #公司回应 ... ·  22 小时前  
新浪科技  ·  【#格力高管称公众对董明珠有误解# ... ·  昨天  
新浪科技  ·  【#马斯克Grok启用新Logo##马斯克G ... ·  昨天  
51好读  ›  专栏  ›  互联网分析沙龙

运营人必备的7大技能——数据分析能力是未来运营的分水岭

互联网分析沙龙  · 公众号  · 科技媒体  · 2017-01-14 18:03

正文

|沙龙精选自 艺林小宇 (ID: cs-jy8


我之前在「后产品时代的运营之道」的系列文章《「后产品时代的运营之道」数据分析的那些方法论》提到: 数据驱动运营是未来运营的趋势 ,也是我们运营人的一个分水岭,在运营的刀耕火种时代已经趋于没落的时候,精细化运营已经变得尤为重要,数据驱动决策是我们运营人必须要面对的挑战也是我们要下意识学的一门技能。


但也是很多刚进入运营领域的新人一个头疼问题,因为他所涉及到的数据分析方法、方法论、逻辑分析能力以及一些工具的使用,而且一堆数据也是很多运营人员不愿面对的。本章节我们就从如何获取数据、如何分析数据以及一款产品都关注哪些数据维度。


1

数据从哪里获取


在我们分析数据之前,就必须得有数据供我们分析,所以我们就得拿到数据,怎么拿到呢?


数据的来源渠道主要有两种:


  • 自有数据分析系统——公司自有的数据是最源质化的数据,也是最可靠、最全面的。一般而言,有条件的情况下都是以内部数据为准;


  • 第三方数据分析工具,这个是借助外部工具获得数据。


下面给大家介绍主要5款的数据分析工具:


1.友盟

支持iOS、Android应用数据统计分析


2.growingio

growingio强大的地方在于无需埋点,就可以获取并分析全面、实时的用户行为数据,以优化产品体验,实现精益化运营。


3.应用雷达

仅针对iOS,查看App Store总榜和分类排名。查看产品在App Store 里的搜索度得分,评判ASO效果的标准之一。


4.百度移动统计

支持ios和android平台。另外,开发者在嵌入统计SDK后,可以对自家产品进行较为全面的监控,包括用户行为、用户属性、地域分布、终端分析等。


5.酷传

仅支持android平台应用监控。开发者可以查看应用在主流市场下载量、排名、评分评论、关键词排名等数据,还能系统地与同类竞品进行数据对比。


当然了,数据分析工具不止这5款,如果你们正在使用其他的,也是可以的。使用分析工具我们可以得到以下内容:


  • 记录那些点击信息,包括没有与网站产生交互的信息;可直接生成链接的百分比,点击分布图和热力图;可统计用户的悬停,将用户潜在行为可视化


  • 获取数据的方式其实多种多样,关键在于,作为运营人员要了解什么样的数据是重要的,对于这些数据的前后关联,是怎样的,这是一个联动的过程,不是一个单一的行为。


有了这些数据之后,我们该怎么去分析这些数据呢?哪些是可以为我们所用的额,又有哪些是可以剔除掉的。


2

如何分析现有的数据


从第三方数据分析工具或者自家的分析后台拿到这些数据后 ,该怎么去分析呢?我相信很多运营人在拿到数据时,都是没多少思路的。要么胡子眉毛一把抓,要么无从下手。这都是缺少分析思路的表现,需要宏观的方法论和微观的方法来指导。


在上几期的文章中,在艺林小宇的文章《「后产品时代的运营之道」数据分析的那些方法论》中,罗列在我们进行数据分析时经常会使用到方法论,这些方法论在我们进行数据分析时扮演宏观指导的角色。所以说在我们进行数据分析时,应该先找到适合自己的方法论进行指导。主要会用到的方法论:


1.PEST分析法: 用于对宏观环境的分析,包括政治(political)、经济(economic)、社会(social)和技术(technological)四方面。


2.5W2H分析法: 何因(Why)、何事(What)、何人(Who)、何时(When)、何地(Where)、如何就(How)、何价(How much)。


3.逻辑树分析法: 把问题的所有子问题分层罗列。


4.4P营销理论: 分析公司的整体营运情况,包括产品(product)、价格(price)、渠道(place)、促销(promotion)四大要素。


5.用户行为理论: 主要用于网站流量分析,如回访者、新访者、流失率等,在众多指标中选择一些适用的。


6.AARRR(增长黑客的海盗法则): 精益创业的重要框架,从获取(Acquisition)、激活(Activition)、留存(Retention)、变现(Revenue)和推荐(Referral)5个环节增长。


数据分析的方法论很多,这里不能一一列举;没有最好的方法论,只有最合适的。下面我详细介绍一下 AARRR 方法论,对于精益化运营、业务增长的问题,这个方法论非常契合。


对于互联网产品而言,用户具有明显的生命周期特征,我以一个APP为例阐述一下。


首先通过各种线上、线下的渠道获取新用户,下载安装APP。安装完APP后,通过运营手段激活用户;比如说首单免费、代金券、红包等方式。通过一系列的运营使部分用户留存下来,并且给企业带营收。


在这个过程中,如果用户觉得这个产品不错,可能推荐给身边的人;或者通过红包等激励手段鼓励分享到朋友圈等等。需要注意的是,这5个环节并不是完全按照上面顺序来的;运营可以根据业务需要灵活应用。AARRR的五个环节都可以通过数据指标来衡量与分析,从而实现精益化运营的目的;每个环节的提升都可以有效增长业务。


在使用这些数据分析方法论要明确他们的作用:

●  理顺分析思路,确保数据分析结构体系化。

●  把问题分解成相关联的部分,并显示它们之间的关系。

●  为后续数据分析的开展指引方向。

●  确保分析结果的有效性及正确性。


再比如,我们在分析APP的数据维度时,会使用到趋势分析法,因为趋势分析是最简单、最基础,也是最常见的数据监测与数据分析方法。通常我们在数据分析产品中建立一张数据指标的线图或者柱状图,然后持续观察,重点关注异常值。在这个过程中,我们要选定第一关键指标,而不要被虚荣指标所迷惑。


如果我们将我们分析的APP的下载量作为第一关键指标,可能就会走偏;因为用户下载APP并不代表他使用了你的产品。在这种情况下,建议将日活跃用户作为第一关键指标,而且是启动并且执行了某个操作的用户才能算上去;这样的指标才有实际意义,运营人员要核心关注这类指标。


3

一款产品都关注哪些数据维度


我们都知道,运营人每天都会跟各种各样的数据打交道,那一款产品都有那些数据维度是我们经常会分析到的呢?


一款产品(特指APP)的数据指标体系一般都可以分为:用户规模与质量、渠道分析、参与度分析、功能分析以用户属性分析。







请到「今天看啥」查看全文