博伊金说,十年前,老同学们一个个都投身金融界。在华尔街,物理学家的技能组合也适用于预测市场走向。
一种关键工具就是布莱克-舒尔兹模型(Black-Scholes Equation),它被用来确定金融衍生品的价值,也参与酿成了2008年的金融大崩溃。
而今,博伊金和其他物理学家们表示,更多的同侪转向了数据科学和其他的计算机技术领域。
2010年以后,物理学家们纷纷进入顶尖的科技公司,参与构建所谓的大数据软件,处理成百上千台机器的数据。
在Twitter,博伊金就参与构建了名为Summingbird的大数据软件。在麻省理工学院(MIT)物理系结识的三名物理学家创办了初创企业Cloudant,也是构建类似的软件。
物理学家知道如何对付数据——Cloudant的三位创始人在MIT就负责处理大型强子对撞机的巨量数据。
构建这些巨大的复杂系统,离不开物理学家独有的抽象思维能力;而一旦系统建立起来,又会有无数的物理学家参与其中,使用系统所驾驭的数据。
在早年的谷歌,巨型分布式系统的关键构建者之一是斯坦福大学弦理论博士尤纳坦·臧格(Yonatan Zunger)。
当初,凯文·斯科特(Kevin Scott)加入谷歌广告团队,负责从谷歌全网抓取数据,并以此预测哪些数据可能获得最多点击。
为此,斯科特雇佣了不少物理学家。机器学习具有极强的实验性质,这和物理学家的技能组合极为相契。
这是物理学家区别于很多计算机科学家的地方。“这几乎就是实验室科学,”斯科特说。如今他在LinkedIn担任首席技术官。
大数据软件已成家常便饭。Stripe正使用博伊金曾参与构建的系统的开源版本;其他无数企业的机器学习模型也在其帮助下,驱动着各项预测。
因此,物理学家的硅谷之路越走越宽。
在Stripe,博伊金的团队里还有哥伦比亚大学的物理学博士、哈佛大学的物理学硕士和MIT的物理学学士。
他们因技能对口和薪酬优厚加入这个团队。正如博伊金所说:“科技领域的薪水可以说高得离谱。”但他们也是看中了无数有待攻克的难题。