在表观遗传学中,表观遗传修饰可以在不改变基本DNA序列的情况下,通过在DNA中添加或删除化学基团来调节基因表达。这种调节可以影响蛋白质的产生,并驱动一些基本的细胞功能。
在新的研究中,研究人员将这种自然的机制用在了编码数字信息上。他们发展出的新的DNA存储法,不再需要从零开始构建DNA,而是对已有的DNA链加以利用。具体来说,它是通过在特定的DNA碱基上添加或删除被称为甲基(CH₃)的化学标记来编码信息的,这就减少了对合成的依赖。
甲基化是一种自然的生化过程,在这个过程中,酶会在胞嘧啶和鸟嘌呤碱基相邻的位点上,向含有胞嘧啶的核苷酸添加一个甲基。在生物系统中,甲基化在表观遗传学中起着关键作用。
在实验中,研究人员通过在特定的DNA碱基上增减甲基的方式,成功创造出了表观比特。这是一些功能类似二进制开关的微小分子数据点,甲基化碱基(epi-bit 1)和未甲基化碱基(epi-bit 0)就相当于计算机中使用的二进制代码0和1。
为了利用甲基化来进行数据存储,研究人员使用了一种被称为并行分子打印的方法。这种方法需要用到一条作为模板的通用DNA链,以及700个作为构建块的不同DNA片段。每个构建块都包含一个独特的表示数字信息的表观比特模式,只可以绑定到模板上的一个特定位置。每块构建块与模板的精确结合,都可以引导酶对模板中的特定位置进行甲基化,进而有效地将数据“打印”到模板上。
通过将这些构建块排列在DNA链上,研究人员编码了大约27万比特的数据,每次可以写入350比特。通过一些先进的测序技术,存储的数据可以被快速而准确地读取。