爱因斯坦场方程,用惠勒的话解释,就是物质告诉时空如何弯曲,时空告诉物质如何运动。
广义上讲,黑洞的现代定义是:一个(有限的)空间区域,信号可以进入但没有信号可以发出,这一区域就称为黑洞。奥本海默等人首先利用广义相对论计算暗星,得到和拉普拉斯一样的结果。1964年,惠勒利用计算机模拟证明中子星坍缩会生成暗星,并将正式将暗星命名为黑洞。
惠勒亦曾用“无毛定理”来描述处于平衡态的孤立黑洞——只需质量、角动量和电荷三个参数即可描述它们。其中,不旋转且不带电的是上文提到的史瓦西黑洞,带电而不旋转的黑洞称为莱斯纳-诺斯特隆黑洞,不带电但旋转的黑洞叫克尔黑洞,而带电并旋转的黑洞则叫克尔-纽曼黑洞。然而在宇宙中,我们几乎无法找到孤立的黑洞,因此很难只依靠这三个参数来描述真实的黑洞,这样研究黑洞的微扰理论就显得尤为重要。
黑洞对外界干扰的反应可以分为三个阶段:初始阶段、拟正则模阶段和晚期尾巴阶段。其中,拟正则模是黑洞收到外界扰动之后出现的一类不断振荡衰减的特征信号。由黑洞本身的特征,而非微扰的方式所决定,因此可以用来鉴别黑洞,被称作黑洞的指纹。
上世纪60年代,黑洞的研究有了非常大的进展。1963年发现类星体,1968年发现脉冲星,以及1965黑洞的一般解的获得,将黑洞的研究推向了一个新高潮。而七十年代,霍金、彭罗斯、贝肯斯坦等人对黑洞量子力学、黑洞热力学等的研究,将黑洞研究推向了一个新的高潮。
如果从恒星演化的角度说,恒星演化末期可分为以下几种情况:
1、剩余质量小于钱德拉塞卡极限(1.4倍太阳质量):——白矮星:靠电子的简并压力(泡利斥力)来与万有引力抗衡而形成的稳定天体。
2、剩余质量超过钱德拉塞卡极限,小于奥本海默极限(约3倍太阳质量)——中子星:靠中子间的泡利斥力与万有引力相抗衡的星体。
3、剩余质量超过奥本海默极限:黑洞。
也就是说,对于质量足够大的黑洞,最终形成黑洞,是演化的自然结果。一般来说,如果是以这种方式产生的黑洞,最终质量约为1到100倍太阳质量。
另一方面,黑洞也有可能是以星团的坍缩形式产生的。在星系的中心,或者是非常致密的星团中,恒星的碰撞会导致超大质量的天体形成,最终由于引力坍缩而变成黑洞。
另一种更具有推测性的是原始黑洞。在宇宙早期,物质的密度非常高且不均匀分布,这就有可能产生黑洞。这种黑洞的质量可能非常大,也可能非常小。