专栏名称: 新智元
智能+中国主平台,致力于推动中国从互联网+迈向智能+新纪元。重点关注人工智能、机器人等前沿领域发展,关注人机融合、人工智能和机器人革命对人类社会与文明进化的影响,领航中国新智能时代。
目录
相关文章推荐
爱可可-爱生活  ·  【Claude和o3 ... ·  昨天  
爱可可-爱生活  ·  【[661星]Meridian:谷歌推出的营 ... ·  4 天前  
编程技术进阶  ·  “DeepSeek 甚至绕过了 ... ·  5 天前  
编程技术进阶  ·  “DeepSeek 甚至绕过了 ... ·  5 天前  
51好读  ›  专栏  ›  新智元

1/10训练数据超越GPT-4o!清华等提出隐式过程奖励模型PRIME,在线刷SOTA

新智元  · 公众号  · AI  · 2025-01-07 14:21

正文



新智元报道

编辑:alan
【新智元导读】 1/10训练数据激发高级推理能力!近日,来自清华的研究者提出了PRIME,通过隐式奖励来进行过程强化,提高了语言模型的推理能力,超越了SFT以及蒸馏等方法。

Tell me and I forget, teach me and I remember, involve me and I learn.

告诉我,我会忘记,教我,我会记住,让我参与,我就能学会。

——本杰 明·富兰克林

打破数据墙,我们还能做些什么?

近日,来自清华UIUC等机构的研究者提出了PRIME(Process Reinforcement through IMplicit REwards):通过隐式奖励来进行过程强化。

GitHub地址:https://github.com/PRIME-RL/PRIME

这是一种带有过程奖励的在线RL开源解决方案,可以提高语言模型的推理能力,超越了SFT(监督微调)或者蒸馏等方法。

对比SFT,PRIME让模型在重要基准测试上实现了巨大提升:平均提高了16.7%,在AMC和AIME中都提高了20%以上。

Eurus-2-7B-PRIME与Qwen2.5-Math-7B-Instruct,使用了相同的base model(Qwen-2.5-Math-7B),但在上表的6项测试中,5项都超越了instruct版本,同时也超越了GPT-4o。

而这个成绩只用了Qwen Math 1/10的数据资源(230K SFT + 150K RL)!

作者发布了本研究中使用的所有模型和数据,感兴趣的读者请见文后链接。

过程奖励模型

热身阶段(SFT)

如前所述,选择Qwen2.5-Math-7B-Base作为起点,然后上点难度,采用竞赛级别的数学和编程基准,包括AIME 2024、AMC、MATH-500、Minerva Math、OlympiadBench、LeetCode和LiveCodeBench(v2)。

首先对基础模型进行监督微调,以获得RL的入门模型(教模型学习某些推理模式)。

为此,研究人员设计了一个以动作为中心的链式推理框架,策略模型在每个步骤中选择7个动作中的一个,并在执行每个动作后停止。

为了构建SFT数据集,研究者从几个开源数据集中收集了推理指令。

值得注意的是,对于许多具有真实答案的数据集,作者选择将其保留用于之后的RL训练,目的是让SFT和RL使用不同的数据集,以使RL中的探索多样化,并且作者认为在PL中真实标签更加重要。

作者用LLaMA-3.1-70B-Instruct来回答指令,并使用系统提示要求模型执行以动作为中心的思维链。

隐式PRM

下面接入过程奖励模型(PRM),这里采用隐式PRM,只需要在响应级别标签上训练ORM。

过程奖励模型简单理解就是对每个推理步骤进行评分,举个例子:

PRM是以这种粒度来评价响应的。

在本文的隐式PRM中,可以使用以下方式免费获得过程奖励:

通过简单地收集响应水平数据和训练ORM来获得PRM,而无需注释步骤标签。

这与ORM训练目标的具体选择无关,比如使用交叉熵损失来实例化隐式PRM,就可以替换成:

强化学习

本文的目标是广泛利用强化学习(RL)来提高推理能力。针对这种资源有限的情况,作者总结了一些最佳实践:

从Ground Truth验证器和高质量数据开始:作者进行了严格的数据收集和清理,以获得可验证的RL数据,并发现仅使用结果验证器足以构建强大的基线。


作者比较了不同的RL算法得出结论,无价值模型的REINFORCE类方法足够有效。


使用「mid-difficulty」问题进行稳定训练:作者提出了一种名为在线提示过滤器的机制,通过过滤掉困难和简单的问题,在很大程度上稳定了RL训练。

使用PRM进行强化学习

将PRM集成到在线强化学习中并非易事,这里有几个需要解决的关键挑战。

如何为强化学习提供密集奖励?

奖励稀疏性一直是强化学习中长期存在的问题。到目前为止,我们仍然没有特别好的解决方案来为LLM的在线强化学习构建密集奖励。

以前的方法主要是为密集奖励建立一个额外的价值模型,众所周知,这样的模型很难训练,而且性能提升不大。

根据前文对隐式PRM的介绍,使用

可以免费从隐式PRM中获得token级别的过程奖励。

这种方式可以直接取代PPO中的价值模型,非常容易与任何优势估计函数和结果奖励相结合。在实践中,作者将过程奖励与REINFORCE、RLOO、GRPO、ReMax和PPO集成在一起,并进行了细微的修改。

如何设置一个好的PRM来启动RL?

即使我们找到了在RL中使用过程奖励的途径,训练好的PRM也并非易事:需要收集大规模(过程)奖励数据(很贵),并且模型应该在泛化和分布偏移之间取得良好的平衡。

隐式PRM本质上是一种语言模型。因此从理论上讲,可以使用任何语言模型作为PRM。在实践中,作者发现最初的策略模型本身就是的一个很好的选择。

如何在线更新PRM以防止奖励黑客攻击?

在线RL中,避免RM被过度优化或被黑客入侵至关重要,这需要RM与策略模型一起不断更新。然而,鉴于步骤标签的成本很高,在RL训练期间很难更新PRM,——可扩展性和泛化问题。

但是,本文的隐式PRM仅要求更新结果标签。也就是说,使用结果验证器即可在训练期间轻松更新PRM。

此外,还可以进行双重转发:首先使用策略部署更新PRM,然后使用更新的PRM重新计算过程奖励,从而提供更准确的奖励估算。

PRIME算法







请到「今天看啥」查看全文