文章来源:
慧智微电子
原文作者:
彭
“效率”在射频功率放大器(PA)设计中占据举足轻重的地位。高效率PA设计的两大核心:PA的“Class”设计以及功率合成架构。然而,在实际的射频前端系统中,PA并非孤立存在,而是与整个系统紧密相连。系统层面的设计方案对PA功耗有着深远影响。
当单体PA的效率提升至一定极限后,PA厂商、平台厂商以及终端系统厂商开始将研究焦点转向包含PA在内的系统级设计。试图通过更高层次的系统解决方案,进一步突破PA的性能瓶颈。在这一领域,既有大家耳熟能详的包络跟踪(ET)和数字预失真(DPD)技术,也有相对陌生的负载调制(Load Modulation)和波峰因子减少(CFR)等技术。
这些技术究竟是如何神奇地提升PA效率的?未来又有哪些新技术可能应用于PA效率的提升?本文将试着从系统级的角度,理解高效率PA系统设计的奥秘。
在PA的单体设计中,效率和设计所选的“Class”、拓扑架构乃至匹配网络的损耗等诸多因素紧密相连。然而,从系统层面来看,
各种PA的效率曲线都可大致描绘为一根随功率提升而上升的曲线。
简而言之,随着功率的增加,射频摆幅扩大,越来越多的能量被转化为射频信号,因此在高功率状态下,PA将直流电转换为射频信号的效率达到最高。
图:典型的PA效率曲线
尽管不同PA的峰值效率点和功率回退时的斜率存在差异,但效率随功率变化的大致趋势是固定的。基于这一效率曲线,我们可以得出一个PA高效率应用的基本原则:
尽量让PA工作在接近高功率的状态。
然而,这种高效率状态并非没有代价。当PA越接近高功率饱和区,其线性度就会逐渐恶化。典型的增益随输出功率变化曲线显示,在饱和区,PA增益可能会出现几dB甚至十几dB的压缩,对于线性信号而言,这几乎使得PA处于不可用状态。
图:典型
的PA效率与增益曲线
这一困境该如何应对?这就需要引入“功率回退”(Power-back off)的理念。所谓功率回退,即为了保持输出信号的线性度,在使用时将功率从饱和点适度降低。这意味着为了保证线性度,我们必须牺牲一部分功率输出,也就牺牲了一部分的效率。
图:PA的功率回退使用
在PA的应用中,效率和线性度始终是一对需要权衡的因素。这种权衡体现在多个方面:
-
在调整输出功率时,效率随功率增加而提升,但线性度却随之下降;
-
在进行负载匹配时,PA的最佳效率点和最佳线性度点往往并不重合;
-
在选择供电电压时,更高的电压虽然有利于改善线性度,但也会降低效率。
因此,在PA设计中,如何平衡效率和线性度成为了一个永恒的挑战。
在PA设计中,会致力于扩展PA的工作区域,以获得更出色的效率表现。例如,设计时会尽量推迟P1dB点的出现,使PA增益的压缩尽量延迟,从而让PA的工作点更接近饱和点,以减少效率损失。
同样,在不需要极高功率的设计中,也可以通过降低饱和功率的设计,也能使PA工作点更加接近饱和功率处的高效区域。
在系统设计层面,也可以采用类似的理念来提升效率。这里,CFR和DPD两项关键技术发挥着重要作用。
CFR:降低信号的峰均比
CFR(Crest Factor
Reduction),即波峰因数降低技术,实质上是一种信号“削峰”技术。在现代通信系统中,传输的信号通常是幅度和相位均带有信息的编码信号,这导致信号存在较大的峰均比(PAPR)。峰均比越大,意味着信号中的峰值与均值之间的偏差越大。
为了保证信号不失真,必须确保信号的最高功率点不超过PA的饱和区。因此,均值功率的工作点需要比饱和功率低至少一个峰均比。所以,信号的峰均比越大,需要回退的功率就越多,从而降低PA的效率。
CFR技术通过算法处理原始信号,尽量减少高峰均值信号的出现,或通过限幅、削峰等方法对输入信号进行限制。这样,进入PA的信号就不会有过高的峰值,使PA能够在更高的功率范围内工作,从而提升效率。下图为经过CFR修改后的信号与原始信号对比图[1]。
由于OFDM信号的特性,4G/5G信号在时域中具有显著的峰均比,这使得CFR技术显得尤为重要。系统CFR能力的强弱直接影响到整个系统的性能表现。因此,在基站和手机终端等平台中,CFR技术已经得到了广泛的推广和应用。
DPD:校准PA失真
尽管CFR能够整形信号并降低峰均比,但信号的峰均比始终存在。当PA的功率向上提升时,必然会遇到线性度恶化的问题。此时,DPD技术便发挥作用。
DPD(Digital
Pre-distortion),即数字预失真技术,其核心理念是让输入信号提前产生一个与PA相反的失真,以抵消PA引入的失真,工作原理如下图所示。
在DPD的帮助下,PA的线性度得到提升。系统也就能容忍更多的PA线性度恶化,从而使其能够在更高的功率范围内工作,进而提高效率。有DPD和没有DPD时,PA可工作的功率区域如下图所示。
DPD操作完全在数字域进行,无需对PA进行特殊调整即可看到效果。然而,DPD并非万能,它也有自身的局限性。DPD的效果强烈依赖于算法,而移动终端由于功耗和算力的限制,无法支持过于复杂的DPD算法。此外,PA的特性会随温度、负载、偏压和批次等因素的变化而变化,为了获得良好的校正效果,DPD需要不断调整以适应这些变化。同时,DPD需要与PA进行联合调试和特定开发,以充分发挥二者的潜力。
尽管有所限制,DPD仍在蜂窝和Wi-Fi等应用中得到了广泛应用。最近Wi-Fi应用中较为热门的“非线性PA”,就是利用DPD技术和非线性PA技术结合实现的高效率PA技术。
无论是CFR还是DPD,它们都旨在通过算法降低系统对PA线性度的要求,从而提升PA的工作功率和效率。这些技术对平台的算法能力提出了更高的要求。
除了CFR和DPD之外,系统中还采用了另一种方法来提升PA在回退功率点的效率,即“动态调制”。这种方法通过动态调整系统参数,来优化PA的工作效率。
动态调制是指根据信号的输出功率,实时调整系统中的某些关键参数(如供电电压、供电电流、负载阻抗等),以达到优化功耗的目的。这种调制方式要求参数的变化必须非常迅速,以适应信号输出的瞬时变化需求,达到接近实时的状态。
以100MHz带宽的5G NR信号为例,调制信号的变化需要达到纳秒级别,才能与包络信号的变化保持同步。这样的速度要求远远超出了芯片内部数字接口电路的能力范围。举例来说,射频前端标准接口协议MIPI RFFE的最大通信时钟频率为52MHz,发送一个完整的MIPI指令需要25个时钟周期,即完成一个控制转变需要0.48mS。这个速度比动态调制所需的切换速度慢了上百倍。
因此,为了实现参数的动态调制,通常会利用模拟控制接口,或者直接利用PA的内部特性来完成。
根据调节参数的不同,动态调制主要可分为以下三种类型:
-
-
-
这些调制方式能够更有效地管理功耗,尤其是功率回退时的功耗,提升系统的整体效率。
Vcc动态调制:
供电电压的灵活调整。
Vcc动态调制的核心思想在于,使PA的供电电源能够随信号幅度的变化而灵活调整,而非保持固定值。
这种动态调整有助于显著提高PA效率,减少不必要的能量损耗。
上图是Vcc动态调制的基本原理。对于高峰均比信号,其幅度随时间快速变化。若采用固定电压供电,将会导致显著的能量浪费。而通过使电源电压跟随信号幅度变化,可以实时优化能耗。
实现Vcc动态调制的两种主要技术是EER(Envelope Elimination and Restoration,包络消除与恢复)和ET(Envelope Tracking,包络跟踪)。
EER技术
EER技术由Kahn教授于1952年提出,其基本原理是将输入信号分解为两部分处理[2]。其基本架构如下图所示。
图:EER
PA系统架构
在EER架构中,一路信号忽略包络信息,直接传输至工作在开关状态的PA,从而实现高效放大。这一过程中,包络信息被主动消除,故称“包络消除”通路。
另一路则负责“包络恢复”。首先,通过包络检测电路提取包络信号,然后输入包络调制器。输出的包络信号用作饱和PA的动态供电电源,既实现了电源的动态调制,又完成了包络的恢复。
EER电路的优点在于巧妙地将包络信号和载波信号分离处理,使得两个通路各司其职,互不干扰,从而提高了系统效率。然而,它也存在一些缺点:
-
由于信号的幅度和相位信息被拆分,因此需要精确对齐两个通路以确保信号的完整恢复。
-
EER过程中存在幅度消除和恢复两个环节,若处理不当可能导致信号失真。
-
本质上,EER相当于包络信号与高频恒包络信号的混频,可能引发频谱扩展问题。
鉴于EER技术的复杂性和挑战性,另一种更为简洁的PA系统结构——ET技术应运而生。
ET技术
ET,即包络跟踪技术,其核心理念是“跟踪”信号所需的电源幅度,并为PA提供相应电源。这样既节省了功耗,又避免了EER技术中复杂的信号拆分与对齐过程。结合ET技术,可以显著提升系统整体效率。ET系统架构如下图所示。
然而,ET技术的性能高度依赖于ET
Modulator的表现。为了输出大带宽(100MHz及以上)、大电流(2A及以上)的包络信号,并保持高转换效率,ET调制器的设计面临巨大挑战。随着带宽和电流能力的增强,实现高效率变得愈发困难。
在5G应用中,即使信号带宽维持在100MHz,ET调制器的转换效率通常也仅约80%,意味着存在20%左右的能量损失。因此,ET PA系统的收益必须足以弥补这部分能量损失才能实现整体收益。随着未来信号带宽的不断增加,ET调制器的设计难度将进一步上升。
Bias的动态调制
除了对供电电压Vcc进行动态调制外,PA的偏置电流,即Bias,同样可以进行动态调制以优化性能。
Saleh教授等人在1983年的一篇文章中,提出了一种创新的系统架构来提升PA的效率[3]。该架构的核心在于,通过提取输入信号的包络来控制PA的Bias,使Bias能够随输入信号包络的变化而动态调整。这种调整方式目标是实现PA效率的最优化。
图:Saleh教授等于1983年提出的Bias调制PA架构
在现代PA设计中,“动态偏置”特性被巧妙地融入Bias电路的设计中,以提升效率并优化线性度。